Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants micelles

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

Although the remainder of this contribution will discuss suspensions only, much of the theory and experimental approaches are applicable to emulsions as well (see [2] for a review). Some other colloidal systems are treated elsewhere in this volume. Polymer solutions are an important class—see section C2.1. For surfactant micelles, see section C2.3. The special properties of certain particles at the lower end of the colloidal size range are discussed in section C2.17. [Pg.2667]

Studies of micellar catalysis of himolecular reactions of uncharged substrates have not been frequent" ". Dougherty and Berg performed a detailed analysis of the kinetics of the reaction of 1-fluoro-2,4-dinitrobenzene with aniline in the presence of anionic and nonionic surfactants. Micelles induce increases in the apparent rate constant of this reaction. In contrast, the second-order rate constant for reaction in the micellar pseudophase was observed to be roughly equal to, or even lower than the rate constant in water. [Pg.131]

In some cases, dye-forming moieties attached to a polymeric backbone, called a polymeric coupler, can replace the monomeric coupler in coupler solvent (51). In other reports, very small particles of coupler solubilized by surfactant micelles can be formed through a catastrophic precipitation process (58). Both approaches can eliminate the need for mechanical manipulation of the coupler phase. [Pg.476]

Mass-action model of surfactant micelle formation was used for development of the conceptual retention model in micellar liquid chromatography. The retention model is based upon the analysis of changing of the sorbat microenvironment in going from mobile phase (micellar surfactant solution, containing organic solvent-modifier) to stationary phase (the surfactant covered surface of the alkyl bonded silica gel) according to equation ... [Pg.81]

M. E. Cates, S. J. Candau. Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2 6869-6892, 1990. [Pg.550]

Functionalized polyelectrolytes are promising candidates for photoinduced ET reaction systems. In recent years, much attention has been focused on modifying the photophysical and photochemical processes by use of polyelectrolyte systems, because dramatic effects are often brought about by the interfacial electrostatic potential and/or the existence of microphase structures in such systems [10, 11], A characteristic feature of polymers as reaction media, in general, lies in the potential that they make a wider variety of molecular designs possible than the conventional organized molecular assemblies such as surfactant micelles and vesicles. From a practical point of view, polymer systems have a potential advantage in that polymers per se can form film and may be assembled into a variety of devices and systems with ease. [Pg.52]

A number of studies have focused on D-A systems in which D and A are either embedded in a rigid matrix [103-110] or separated by a rigid spacer with covalent bonds [111-118], Miller etal. [114, 115] gave the first experimental evidence for the bell-shape energy gap dependence in charge shift type ET reactions [114,115], Many studies have been reported on the photoinduced ET across the interfaces of some organized assemblies such as surfactant micelles [4] and vesicles [5], wherein some particular D and A species are expected to be separated by a phase boundary. However, owing to the dynamic nature of such interfacial systems, D and A are not always statically fixed at specific locations. [Pg.84]

An important kinetic aspect of the washing process is the rate of removal of oily stains by surfactant micelles. Several mechanisms have been suggested for the solubilization of oil into micelles. Chan [67] and Carroll [68] propose diffusion of micelles toward the oil-water interface, followed by demicellization,... [Pg.412]

The catalytic activity of surfactant micelles and the effect of the concentration of reagents in micelle catalysis are tested on hydrolysis of esters of phosphorus acids [25],... [Pg.614]

In a multiphase formulation, such as an oil-in-water emulsion, preservative molecules will distribute themselves in an unstable equilibrium between the bulk aqueous phase and (i) the oil phase by partition, (ii) the surfactant micelles by solubilization, (iii) polymeric suspending agents and other solutes by competitive displacement of water of solvation, (iv) particulate and container surfaces by adsorption and, (v) any microorganisms present. Generally, the overall preservative efficiency can be related to the small proportion of preservative molecules remaining unbound in the bulk aqueous phase, although as this becomes depleted some slow re-equilibration between the components can be anticipated. The loss of neutral molecules into oil and micellar phases may be favoured over ionized species, although considerable variation in distribution is found between different systems. [Pg.367]

Templates made of surfactants are very effective in order to control the size, shape, and polydispersity of nanosized metal particles. Surfactant micelles may enclose metal ions to form amphiphilic microreactors (Figure 11a). Water-in-oil reverse micelles (Figure 11b) or larger vesicles may function in similar ways. On the addition of reducing agents such as hydrazine nanosized metal particles are formed. The size and the shape of the products are pre-imprinted by the constrained environment in which they are grown. [Pg.33]

A fascinating area is micellar autocatalysis reactions in which surfactant micelles catalyse the reaction by which the surfactant itself is synthesized. Thus synthesis of dimethyldoceylamino oxide (reaction between dimethyl dodecyl amine and H2O2) benefits from this strategy. Here an aqueous phase can be used and an organic solvent can be avoided. Synthesis of mesoporous molecular sieves benefit through micellar catalysis and silicate polymerization rates have been increased by a factor 2000 in the presence of cetyltrimethyl ammonium chloride (Rathman, 1996). [Pg.149]

This work also shows that the time constants for the ionic surfactant micelle solutions are twice as fast as the TX solution time constant. Differences between the Stern layers of the micelles appear to be the charge of the surfactant polar headgroups and the presence of counterions. However, these differences do not account for the observed dynamics. Since the polar headgroups and counterions should interfact more strongly with the water molecules, the water motion at the interface should be slower. This view is supported by recent investigations where systematic variation of surfactant counter-... [Pg.410]

Colloidal dispersion 1.0 nm-1.0 pm Particles not resolved by ordinary microscope but visible by electron microscopy pass through filter paper but not semipermeable membranes generally slow diffusion Colloidal silver sols, surfactant micelles in an aqueous phase, aqueous latices and pseudolatices... [Pg.243]

Disperse systems can also be classified on the basis of their aggregation behavior as molecular or micellar (association) systems. Molecular dispersions are composed of single macromolecules distributed uniformly within the medium, e.g., protein and polymer solutions. In micellar systems, the units of the dispersed phase consist of several molecules, which arrange themselves to form aggregates, such as surfactant micelles in aqueous solutions. [Pg.244]

The transport properties of the acids did not respond significantly to the presence of the sink. This may be because at pH 7.4 the acids are negatively charged, as are the phospholipid membranes and also the surfactant micelles electrostatic repulsions balanced out the attractive forces due to increased membrane lipophilicity. Lowered surface pH may also play a balancing role [457]. [Pg.197]

The method for creating acceptor sink condition discussed so far is based on the use of a surfactant solution. In such solutions, anionic micelles act to accelerate the transport of lipophilic molecules. We also explored the use of other sink-forming reagents, including serum proteins and uncharged cyclodextrins. Table 7.20 compares the sink effect of 100 mM (5-cyclodextrin added to the pH 7.4 buffer in the acceptor wells to that of the anionic surfactant. Cyclodextrin creates a weaker sink for the cationic bases, compared to the anionic surfactant. The electrostatic binding force between charged lipophilic bases and the anionic surfactant micelles... [Pg.228]

The isotherm characterizing the binding phenomenon of small molecules with surfactant micelles or polymers has been largely studied by means of PFG-NMR. [Pg.198]

Guillaume et al. [69] presented a high performance liquid chromatographic method for an association study of miconazole and other imidazole derivatives in surfactant micellar using a hydrophilic reagent, Montanox DF 80. The thermodynamic results obtained showed that imidazole association in the surfactant micelles was effective over a concentration of surfactant equal to 0.4 pM. In addition, an enthalpy-entropy compensation study revealed that the type of interaction between the solute and the RP-18 stationary phase was independent of the molecular structure. The thermodynamic variations observed were considered the result of equilibrium displacement between the solute and free ethanol (respectively free surfactant) and its clusters (respective to micelles) created in the mobile phase. [Pg.49]

Takahashi, S., Ikkai, Y., Rodriguez-Ahreu, C., Aramaki, K., Ohsuna, T. and Sakamoto, K. (2007) Application of a water soluble alkoxysilane for the formation of mesoporous silica from nonionic surfactant micelles hearing cholesterol. Chemistry Letters, 36, 182— 183. [Pg.112]

Micelles forming above the c.m.c. incorporate hydrophobic molecules in addition to those dissolved in the aqueous phase, which results in apparently increased aqueous concentrations. It has to be noted, however, that a micelle-solubilised chemical is not truly water-dissolved, and, as a consequence, is differently bioavailable than a water-dissolved chemical. The bioavailability of hydrophobic organic compounds was, for instance, reduced by the addition of surfactant micelles when no excess separate phase compound was present and water-dissolved molecules became solubilised by the micelles [69], In these experiments, bacterial uptake rates were a function of the truly water-dissolved substrate concentration. It seems therefore that micellar solubilisation increases bioavailability only when it transfers additional separate phase substrate into the aqueous phase, e.g. by increasing the rates of desorption or dissolution, and when micelle-solubilised substrate is efficiently transferred to the microorganisms. Theoretically, this transfer can occur exclusively via the water phase, involving release of substrate molecules from micelles, molecular diffusion through the aqueous phase and microbial uptake of water-dissolved molecules. This was obviously the case, when bacterial uptake rates of naphthalene and phenanthrene responded directly to micelle-mediated lowered truly water-dissolved concentrations of these chemicals [69]. These authors concluded from their experiments that micellar naphthalene and phenanthrene had to leave the micellar phase and diffuse through the water phase to become... [Pg.424]

An aqueous dispersion of a disperse dye contains an equilibrium distribution of solid dye particles of various sizes. Dyeing takes place from a saturated solution, which is maintained in this state by the presence of undissolved particles of dye. As dyeing proceeds, the smallest insoluble particles dissolve at a rate appropriate to maintain this saturated solution. Only the smallest moieties present, single molecules and dimers, are capable of becoming absorbed by cellulose acetate or polyester fibres. A recent study of three representative Cl Disperse dyes, namely the nitrodiphenylamine Yellow 42 (3.49), the monoazo Red 118 (3.50) and the anthraquinone Violet 26 (3.51), demonstrated that aggregation of dye molecules dissolved in aqueous surfactant solutions does not proceed beyond dimerisation. The proportion present as dimers reached a maximum at a surfactant dye molar ratio of 2 5 for all three dyes, implying the formation of mixed dye-surfactant micelles [52]. [Pg.113]


See other pages where Surfactants micelles is mentioned: [Pg.204]    [Pg.495]    [Pg.2782]    [Pg.260]    [Pg.145]    [Pg.3]    [Pg.213]    [Pg.117]    [Pg.16]    [Pg.246]    [Pg.416]    [Pg.198]    [Pg.50]    [Pg.210]    [Pg.211]    [Pg.225]    [Pg.329]    [Pg.563]    [Pg.217]    [Pg.797]    [Pg.175]    [Pg.425]    [Pg.425]    [Pg.90]    [Pg.81]    [Pg.118]   
See also in sourсe #XX -- [ Pg.210 ]

See also in sourсe #XX -- [ Pg.187 , Pg.217 ]

See also in sourсe #XX -- [ Pg.1049 ]

See also in sourсe #XX -- [ Pg.117 ]

See also in sourсe #XX -- [ Pg.481 ]

See also in sourсe #XX -- [ Pg.597 ]




SEARCH



Micellization surfactants

© 2024 chempedia.info