Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Derivatization limitations

Detection in CE Since carbohydrates lack both a charge and a strong UV chromophore, several derivatization techniques have been described. Very recently, a new method based on precapillary derivatization with luminol (3-amino-phthalhydra-zide) for carbohydrate analysis has been proposed with online chemiluminescence detection. While this method leads to improved sensitivity and resolution, the complexity of derivatization limits its use. Alternatively, methods for the analysis of underivatized carbohydrates have been developed. These methods include the use of high alkaline electrolyte to ionize carbohydrates and make them suitable for indirect UV detection. Mannitol, sorbitol, galactitol, xylitol, and inositol have been detected with indirect UV detection using PDC and CTAB/CTAH as electrolytes. [Pg.458]

Direct sample application Precolumn derivatization limits limits... [Pg.856]

Despite their importance, gas chromatography and liquid chromatography cannot be used to separate and analyze all types of samples. Gas chromatography, particularly when using capillary columns, provides for rapid separations with excellent resolution. Its application, however, is limited to volatile analytes or those analytes that can be made volatile by a suitable derivatization. Liquid chromatography can be used to separate a wider array of solutes however, the most commonly used detectors (UV, fluorescence, and electrochemical) do not respond as universally as the flame ionization detector commonly used in gas chromatography. [Pg.596]

There are ill-defined limits on EI/CI usage, based mostly on these issues of volatility and thermal stability. Sometimes these limits can be extended by preparation of a suitable chemical derivative. For example, polar carboxylic acids generally give either no or only a poor yield of molecular ions, but their conversion into methyl esters affords less polar, more volatile materials that can be examined easily by EL In the absence of an alternative method of ionization, EI/CI can still be used with clever manipulation of chemical derivatization techniques. [Pg.283]

Aminophenols have been detected in waste water by investigating uv absorptions at 220, 254, and 275 nm (87). These compounds can also be detected spectrophotometricaHy after derivatization at concentrations of 1 part per 100 million by reaction in acid solution with /V-(1-napbtby1)etby1enediamine [551-09-7] (88) or 4-(dimethylainino)ben2aldehyde [100-10-7] (89), and the Schiff base formed can be stabilized in chloroform by chelation to increase detection limits (90). [Pg.312]

There is Httie known chemistry of tetrakis-Cp thorium complexes. Pseudotetrahedral molecules, (rj-ring) Tb (15), where ring = Cp [1298-75-5] or Ind [11133-17-6], have a measurable dipole, resulting from deviation of symmetry (88). Difference of coordination environments, eg, v] in the indenyl system and in the Cp system, appears to indicate great steric crowding about the thorium center, which probably limits the reactivity and synthetic derivatization of these complexes. [Pg.42]

A study was conducted to measure the concentration of D-fenfluramine HCl (desired product) and L-fenfluramine HCl (enantiomeric impurity) in the final pharmaceutical product, in the possible presence of its isomeric variants (57). Sensitivity, stabiUty, and specificity were enhanced by derivatizing the analyte with 3,5-dinitrophenylisocyanate using a Pirkle chiral recognition approach. Analysis of the caUbration curve data and quaUty assurance samples showed an overall assay precision of 1.78 and 2.52%, for D-fenfluramine HCl and L-fenfluramine, with an overall intra-assay precision of 4.75 and 3.67%, respectively. The minimum quantitation limit was 50 ng/mL, having a minimum signal-to-noise ratio of 10, with relative standard deviations of 2.39 and 3.62% for D-fenfluramine and L-fenfluramine. [Pg.245]

A new cyanide dye for derivatizing thiols has been reported (65). This thiol label can be used with a visible diode laser and provide a detection limit of 8 X 10 M of the tested thiol. A highly sensitive laser-induced fluorescence detector for analysis of biogenic amines has been developed that employs a He—Cd laser (66). The amines are derivatized by naphthalenedicarboxaldehyde in the presence of cyanide ion to produce a cyanobenz[ isoindole which absorbs radiation at the output of He—Cd laser (441.6 nm). Optimization of the detection system yielded a detection limit of 2 x 10 M. [Pg.245]

For more specific analysis, chromatographic methods have been developed. Using reverse-phase columns and uv detection, hplc methods have been appHed to the analysis of nicotinic acid and nicotinamide in biological fluids such as blood and urine and in foods such as coffee and meat. Derivatization techniques have also been employed to improve sensitivity (55). For example, the reaction of nicotinic amide with DCCI (AT-dicyclohexyl-0-methoxycoumarin-4-yl)methyl isourea to yield the fluorescent coumarin ester has been reported (56). After separation on a reversed-phase column, detection limits of 10 pmol for nicotinic acid have been reported (57). [Pg.51]

Owing to poor volatihty, derivatization of nicotinic acid and nicotinamide are important techniques in the gc analysis of these substances. For example, a gc procedure has been reported for nicotinamide using a flame ionisation detector at detection limits of - 0.2 fig (58). The nonvolatile amide was converted to the nitrile by reaction with heptafluorobutryic anhydride (56). For a related molecule, quinolinic acid, fmol detection limits were claimed for a gc procedure using either packed or capillary columns after derivatization to its hexafluoroisopropyl ester (58). [Pg.51]

These products are characterized in terms of moles of substitution (MS) rather than DS. MS is used because the reaction of an ethylene oxide or propylene oxide molecule with ceUulose leads to the formation of a new hydroxyl group with which another alkylene oxide molecule can react to form an oligomeric side chain. Therefore, theoreticaUy, there is no limit to the moles of substituent that can be added to each D-glucopyranosyl unit. MS denotes the average number of moles of alkylene oxide that has reacted per D-glucopyranosyl unit. Because starch is usuaUy derivatized to a considerably lesser degree than is ceUulose, formation of substituent poly(alkylene oxide) chains does not usuaUy occur when starch is hydroxyalkylated and DS = MS. [Pg.489]

Anions of another group were derivatized with formation of gaseous chemiluminescing species. Chemical reaction - gas extraction has been used with chemiluminescence detection in the stream of canier gas in on-line mode. Rate of a number of reactions has been studied as well as kinetic curves of extraction of gaseous products. Highly sensitive and rapid hybrid procedures have been developed for the determination of lO, BrO, CIO, CIO, NO,, N03, CrO, CIO, Br, T, S, 803 with detection limits at the level of pg/L, duration of analysis 3 min. [Pg.88]

After the dipped or sprayed chromatogram has been dried in a stream of cold air long-wave UV light (2 = 365 nm) reveals fluorescent yellow zones (flavonoids). Sterigmatocystine, which can be detected without derivatization on account of its red intrinsic fluorescence (detection limit 0.5 pg), also fluoresces pale yellow after being heated to 80°C [9] or 100°C [13] for 10 min on the other hand, citrinine, zearalenone and vomitoxin fluoresce blue. [Pg.148]

Note The reagent can be employed on silica gel and cellulose layers. When derivatization is carried out from the vapor phase the detection limit for morphine is 10 ng and that for papaverine 1 ng per chromatogram zone [5]. In some cases it has been recommended that ammonium sulfate be added to the layer with subsequent heating to 150 —180 °C [1] after derivatization. It is also possible to spray afterwards with an aqueous solution of potassium iodide (1 %) and starch (1%) [2]. [Pg.235]

An important difference between Protein-Pak columns and other size exclusion columns is the silica backbone of the Protein-Pak columns. Because the silica structure is unaffected by the solvent, these columns do not swell or shrink as a function of the solvent. This is a general advantage compared to other size exclusion columns. However, silica-based columns can only be used up to pH 8, which limits their applicability. Also, surface silanols are accessible for interaction with the analytes, but this phenomenon has been minimized by proper derivatization techniques. Generally, a small amount of salt in the mobile phase eliminates interaction with silanols. [Pg.346]

It must be pointed out that the heterofuUerenes discussed above are not available today, and may never be available owing to synthetic limitations or unexpected instability not predicted in the above-mentioned theoretical studies. In comparison to carbon bucky balls, the chemistry of heterofuUerenes might have more important implications. Development of molecular engines and computers, derivatization for drug delivery, and applications in material science might be new scientific areas involving these interesting molecules. [Pg.61]

The first bioanalytical application of LC-GC was presented by Grob et al. (119). These authors proposed this coupled system for the determination of diethylstilbe-strol in urine as a replacement for GC-MS. After hydrolysis, clean-up by solid-phase extraction and derivatization by pentafluorobenzyl bromide, the extract was separated with normal-phase LC by using cyclohexane/1 % tetrahydrofuran (THE) at a flow-rate of 260 p.l/min as the mobile phase. The result of LC-UV analysis of a urine sample and GC with electron-capture detection (ECD) of the LC fraction are shown in Ligures 11.8(a) and (b), respectively. The practical detection limits varied between about 0.1 and 0.3 ppb, depending on the urine being analysed. By use of... [Pg.273]

Derivatization of a racemic compound with an achiral group may play an important role in the analysis of a chiral compound (Fig. 7-15). In the case of substances with low or no UV-activity, the compounds can be rendered detectable by introducing an UV-absorbing or fluorescent group. If the racemate itself shows selectivity on a chiral stationary phase (CSP), this method can be applied to reduce the limit of detection. Examples have been reported in the literature, especially for the derivatization of amino acids which are difficult to detect using UV detection. Different derivatization strategies can be applied (Fig. 7-16). [Pg.198]

A sensitive determination of alkanesulfonates combines RP-HPLC with an on-line derivatization procedure using fluorescent ion pairs followed by an online sandwich-type phase separation with chloroform as the solvent. The ion pairs are detected by fluorescence. With l-cyano-[2-(2-trimethylammonio)-ethyl]benz(/)isoindole as a fluorescent cationic dye a quantification limit for anionic surfactants including alkanesulfonates of less than 1 pg/L per compound for a 2.5-L water sample is established [30,31]. [Pg.168]

The procedure for the determination of total secondary alkanesulfonates with TLC and of total monosulfonates specified as homologs and isomers by derivatization GC-MS is shown in Fig. 18. The specific clean-up for sewage sludges prior to total secondary alkanesulfonate determination is outlined in Fig. 19. TLC conditions are given in Table 9. The limits of the quantification of secondary alkanesulfonates are summarized in Table 10. For eight samples and one operator the TLC time schedule is 4 days sample pretreatment and sublation, clean-up, TLC performance, and quantitative evaluation of TLC [24]. [Pg.171]

A very sensitive method for the determination of MCA in surfactants is a gas chromatographic one [249]. The method is based on the derivatization of the sample with ethanol and subsequent extraction of the derived ester with cyclohexane. The acids are identified and qualified gas chromatographically by the use of an electron capture detector and two capillary columns of varying polarities. The detection limit is 0.2 ppm. [Pg.349]

Quantitative accuracy and precision (see Section 2.5 below) often depend upon the selectivity of the detector because of the presence of background and/or co-eluted materials. The most widely used detector for HPLC, the UV detector, does not have such selectivity as it normally gives rise to relatively broad signals, and if more than one component is present, these overlap and deconvolution is difficult. The related technique of fluorescence has more selectivity, since both absorption and emission wavelengths are utilized, but is only applicable to a limited number of analytes, even when derivatization procedures are used. [Pg.26]

Perhaps most encouraging in these discoveries was the observation that NDA/CN worked equally well for derivatization of dipeptides and higher homologues of the primary amino acid series. Again, a stable, fluorescent, isolatable derivative was obtained. One of the most important initial findings was the high fluorescence efficiency of the CBI adduct (12). Tables 1 and 2 list the efficiencies for a representative group of mono-, di-, and tripeptides and a limited comparison of the CBI efficiencies with the more traditional OPA (8) and dansyl (9) derivatives, respectively. [Pg.129]

Table III. Detection Limits of 0PA/2-ME and NDA/CN Derivatized Amino Acids Using Conventional and Laser-Induced Fluorescence (LIF) Detection... Table III. Detection Limits of 0PA/2-ME and NDA/CN Derivatized Amino Acids Using Conventional and Laser-Induced Fluorescence (LIF) Detection...
It is appropriate at this juncture to illustrate the power of chemiluminescence in an analytical assay by comparing the limits of sensitivity of the fluorescence-based and the chemllumlnescence-based detection for analytes in a biological matrix. The quantitation of norepinephrine and dopamine in urine samples will serve as an illustrative example. Dopamine, norepinephrine, and 3,4-dihydroxybenzy-lamine (an internal standard) were derivatized with NDA/CN, and chemiluminescence was used to monitor the chromatography and determine a calibration curve (Figure 15). The limits of detection were determined to be less than 1 fmol injected. A typical chromatogram is shown in Figure 16. [Pg.151]

Reports on the use of fluorescent derivatives abound (5). Some reagents have become widely used. The dansyl group is probably the most thoroughly studied. Dansyl chloride has been widely used as a fluorescent derivatizing reagent for HPLC (6,7). It reacts readily with primary and secondary amino groups (7) and with phenols (8), but forms derivatives of alcohols very slowly (9). The lower detection limit for dansyl derivatives of aliphatic amines is in the range of 300 femtomoles per injection. [Pg.206]


See other pages where Derivatization limitations is mentioned: [Pg.414]    [Pg.854]    [Pg.414]    [Pg.854]    [Pg.578]    [Pg.60]    [Pg.62]    [Pg.331]    [Pg.245]    [Pg.251]    [Pg.33]    [Pg.109]    [Pg.261]    [Pg.277]    [Pg.278]    [Pg.186]    [Pg.299]    [Pg.10]    [Pg.180]    [Pg.106]    [Pg.177]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



© 2024 chempedia.info