Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosive behavior

Although Hitec is nonflammable, it is a strong oxidizer and supports the combustion of other materials. Consequendy, combustible materials must be excluded from contact with the molten salt. Hitec is compatible with carbon steel at temperatures up to 450°C. At higher temperatures, low alloy or austenitic stainless steel is recommended. Adding water to Hitec does not appreciably alter its corrosion behavior. [Pg.505]

Aqueous Corrosion. Several studies have demonstrated that ion implantation may be used to modify either the local or generalized aqueous corrosion behavior of metals and alloys (119,121). In these early studies metallic systems have been doped with suitable elements in order to systematically modify the nature and rate of the anodic and/or cathodic half-ceU reactions which control the rate of corrosion. [Pg.398]

The following mechanisms in corrosion behavior have been affected by implantation and have been reviewed (119) (/) expansion of the passive range of potential, (2) enhancement of resistance to localized breakdown of passive film, (J) formation of amorphous surface alloy to eliminate grain boundaries and stabilize an amorphous passive film, (4) shift open circuit (corrosion) potential into passive range of potential, (5) reduce/eliminate attack at second-phase particles, and (6) inhibit cathodic kinetics. [Pg.398]

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

Because of its low neutron absorption, zirconium is an attractive stmctural material and fuel cladding for nuclear power reactors, but it has low strength and highly variable corrosion behavior. However, ZircaHoy-2, with a nominal composition of 1.5 wt % tin, 0.12 wt % iron, 0.05 wt % nickel, 0.10 wt % chromium, and the remainder zirconium, can be used ia all nuclear power reactors that employ pressurized water as coolant and moderator (see... [Pg.63]

A complete discussion of the corrosion behavior of alloy systems and the influence of metallurgical factors on each is available (30). Some of these factors in a few technologically important alloy systems are discussed here. [Pg.280]

Surface preparation of the dental implant prior to implantation wiH have an effect on corrosion behavior, initial metal ion release, and interface tissue response (316). The titanium and titanium aHoy dental implants in present use have many forms to assist bone ingrowth attachment including cylinders with holes, screw threaded surfaces, porous surfaces, and other types of roughened surfaces. Methods used to produce porous surfaces iaclude arc plasma... [Pg.495]

Rapid-Scan Corrosion Behavior Diagram (CBD) Basically, all the same equipment used in the conductance of an ASTM G5 slow-scan polarization study is used for rapid-scan CBDs (that is, a standard test cell, potentiostat, voltmeters, log converters, X-Y recorders, and electronic potential scanning devices). The differences... [Pg.2431]

The apphcation of an impressed alternating current on a metal specimen can generate information on the state of the surface of the specimen. The corrosion behavior of the surface of an electrode is related to the way in which that surface responds to this electrochemical circmt. The AC impedance technique involves the application of a small sinusoidal voltage across this circuit. The frequency of that alternating signal is varied. The voltage and current response of the system are measured. [Pg.2437]

Corrosion of industrial alloys in alkaline waters is not as common or as severe as attack associated with acidic conditions. Caustic solutions produce little corrosion on steel, stainless steel, cast iron, nickel, and nickel alloys under most cooling water conditions. Ammonia produces wastage and cracking mainly on copper and copper alloys. Most other alloys are not attacked at cooling water temperatures. This is at least in part explained by inherent alloy corrosion behavior and the interaction of specific ions on the metal surface. Further, many dissolved minerals have normal pH solubility and thus deposit at faster rates when pH increases. Precipitated minerals such as phosphates, carbonates, and silicates, for example, tend to reduce corrosion on many alloys. [Pg.185]

Certain alloys frequently used in cooling water environments, notably aluminum and zinc, can be attacked vigorously at high pH. These metals are also significantly corroded at low pH and thus are said to be amphoteric. A plot of the corrosion behavior of aluminum as a function of pH when exposed to various compounds is shown in Fig. 8.1. The influence of various ions is often more important than solution pH in determining corrosion on aluminum. [Pg.185]

Copper-alloy corrosion behavior depends on the alloying elements added. Alloying copper with zinc increases corrosion rates in caustic solutions whereas nickel additions decrease corrosion rates. Silicon bronzes containing between 95% and 98% copper have corrosion rates as low as 2 mil/y (0.051 mm/y) at 140°F (60°C) in 30% caustic solutions. Figure 8.2 shows the corrosion rate in a 50% caustic soda evaporator as a function of nickel content. As is obvious, the corrosion rate falls to even lower values as nickel concentration increases. Caustic solutions attack zinc brasses at rates of 2 to 20 mil/y (0.051 to 0.51 mm/y). [Pg.187]

A comprehensive list of standard potentials is found in Ref. 7. Table 2-3 gives a few values for redox reactions. Since most metal ions react with OH ions to form solid corrosion products giving protective surface films, it is appropriate to represent the corrosion behavior of metals in aqueous solutions in terms of pH and Ufj. Figure 2-2 shows a Pourbaix diagram for the system Fe/HjO. The boundary lines correspond to the equilibria ... [Pg.39]

Heterogeneous surface areas consist of anodic regions at corrosion cells (see Section 2.2.4.2) and objects to be protected which have damaged coating. Local concentrations of the current density develop in the area of a defect and can be determined by measurements of field strength. These occur at the anode in a corrosion cell in the case of free corrosion or at a holiday in a coated object in the case of impressed current polarization (e.g., cathodic protection). Such methods are of general interest in ascertaining the corrosion behavior of metallic construction units... [Pg.123]

The determination and evaluation of potentiodynamic curves can only be used as a preliminary assessment of corrosion behavior. The protection current requirement and the limiting value for the potential control can only be determined from so-called chronopotentiostatic experiments as in DIN 50918. in systems that react with spontaneous activation after the protection current is switched off or there is a change in the operating conditions, quick-acting protection current devices must be used. Figure 8-6 shows the circuit diagram for such a potentiostat. [Pg.477]

Biocorrosion of stainless steel is caused by exopolymer-producing bacteria. It can be shown that Fe is accumulated in the biofilm [2.62]. The effect of bacteria on the corrosion behavior of the Mo metal surface has also been investigated by XPS [2.63]. These last two investigations indicate a new field of research in which XPS can be employed successfully. XPS has also been used to study the corrosion of glasses [2.64], of polymer coatings on steel [2.65], of tooth-filling materials [2.66], and to investigate the role of surface hydroxyls of oxide films on metal [2.67] or other passive films. [Pg.26]

Fire Hazards - Flash Point Flammable solid Flammable limits in Air (%) Not pertinent Fire Extinguishing Agents Sand and carbon dioxide Fire Extinguishing Agents Not to be Used Water fecial Hazards of Combustion Products Products of combustion include sulfur dioxide and phosphorus pentoxide, which are irritating, toxic and corrosive Behavior in Fire Not pertinent Ignition Temperature (deg. F) 527 (liquid) Electrical Hazard Not pertinent Burning Rate Not pertinem. [Pg.316]

Clean metallic aluminum is extremely reactive. Even exposure to air at ordinary temperatures is sufficient to promote immediate oxidation. This reactivity is self-inhibiting, however, which determines the general corrosion behavior of aluminum and its alloys due to the formation of a thin, inert, adherent oxide film. In view of the great importance of the surface film, it can be thickened by anodizing in a bath of 15% sulfuric acid (H2SO4) solution or by cladding with a thin layer of an aluminum alloy containing 1 % zinc. [Pg.90]

The design of a plant has significant implications for its subsequent corrosion behavior. Good design minimizes corrosion risks whereas bad design promotes or exacerbates corrosion. [Pg.903]

The presence of tensile stress in a metal surface renders that surface more susceptible to many kinds of corrosion than the same material in a non-stressed condition. Similarly, the presence of compressive stress in the surface layer can be beneficial for corrosion behavior. [Pg.904]

All aspects of the material s chemical, mechanical and physical properties which are included in the specification should be capable of measurement and certification. For critical duties all material supplied should be fully tested and certified by competent approved, independent test laboratories. All items of plant should be purchased with material certification. Additional certification is required in cases where the fabricator, in manufacturing an item of plant, used techniques such as welding or heat treatment which may affect the corrosion behavior of the construction materials. [Pg.908]

If changes have been made to the process (e.g. if incoming water quality cannot be maintained or other uncertainties arise concerning the corrosion behavior of the construction materials) it is possible to incorporate coupons or probes of the material into the plant and monitor their corrosion behavior. This approach may be used to assist in the materials selection process for a replacement plant. Small coupons (typically, 25 x 50 mm) of any material may be suspended in the process stream and removed at intervals for weight loss determination and visual inspection for localized corrosion. Electrical resistance probes comprise short strands for the appropriate material electrically isolated from the item of plant. An electrical connection from each end of the probe is fed out of the plant to a control box. The box senses the electrical resistance of the probe. The probe s resistance rises as its cross-sectional area is lost through corrosion. [Pg.911]

A noteworthy study by Rhodin19 of the films on stainless steels was carried out mainly because such films largely determine the corrosion behavior of these alloys, but the way in which Rhodin used x-ray emission spectrography is of great interest in analytical chemistry. He stripped these films from the alloys and supported them upon Mylar Q/i mil thick) before determining their composition via x-ray emission spectrography. Films of metals were evaporated onto the same substrate to serve as standards. Rhodin s results are summarized in... [Pg.230]

Most commercial uses of aluminum require special properties that the pure metal cannot provide. The addition of alloying elements imparts strength, improves formability characteristics, and influences corrosion resistance properties. The general effect of several alloying elements on the corrosion behavior of aluminum has been reported by Godard et al. (2) as follows ... [Pg.43]

A prepassivated platinum electrode and an electrode of the metal of interest have been used to follow the development of a biofilm to determine its effects on the corrosion behavior of structural materials. The time dependence of the open circuit potential of several stainless steels... [Pg.208]

Applications of Rp techniques have been reported by King et al. in a study of the corrosion behavior of iron pipes in environments containing SRB. In a similar study, Kasahara and Kajiyama" used Rp measurements with compensation of the ohmic drop and reported results for active and inactive SRB. Nivens et al. calculated the corrosion current density from experimental Rp data and Tafel slopes for 304 stainless steel exposed to a seawater medium containing the non-SRB Vibrio mtriegens. [Pg.211]

Figure 33.2 shows results obtained by studies of electrochemical noise for the corrosion behavior of carbon steel A516-70 in carbonate solutions with and without NaCl as an activator (Cheng et al., 2000). It can be seen that in ordinary carbonate solution the fluctuations of potential of a test electrode and the fluctuations of current flowing between a pair of identical electrodes are small. Added NaCl causes a drastic increase in intensity of the electrochemical noise. The PDS plots (Fig. 33.3) differ accordingly. [Pg.628]

In nonalloyed metal, impurities affect the OCP and the corrosion behavior, while they have little effect on the potential plateau of active dissolution. [Pg.447]

Veawab, A., P. Tontiwachwuthikul, and A. Chakma, Corrosion Behavior in Sterically-Hindered Amine for C02 Separation, Proceedings of Fourth International Conference on Greenhouse Gas Control technologies, Interlaken, September 1998. [Pg.323]


See other pages where Corrosive behavior is mentioned: [Pg.229]    [Pg.398]    [Pg.190]    [Pg.279]    [Pg.283]    [Pg.40]    [Pg.26]    [Pg.1268]    [Pg.899]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.258]    [Pg.216]    [Pg.235]    [Pg.242]    [Pg.11]    [Pg.20]    [Pg.21]   
See also in sourсe #XX -- [ Pg.216 ]

See also in sourсe #XX -- [ Pg.216 ]




SEARCH



A Corrosion Behavior

AISI stainless steels, corrosion behavior

Active-passive corrosion behavior

Active-passive corrosion behavior anodic dissolution

Active-passive corrosion behavior controlled potential

Aluminium corrosion behavior

Aluminum oxides, corrosion, behavior

Austenitic stainless steels, corrosion behavior

Ceramic layers, corrosion behavior

Competitive Surface Adsorption Behavior of Corrosion Inhibitors

Corrosion Behavior of Aluminium

Corrosion Behavior of Aluminum and its Alloys

Corrosion behavior

Corrosion behavior, boiler tubing

Corrosion creep and fatigue behavior of magnesium alloys

Corrosion electrochemical behavior

Corrosion kinetics polarization behavior

Corrosion rate behavior during different

Effect of grain size on electrochemical corrosion behaviors

Epoxy resins corrosion behavior

Hastelloys, corrosion behavior

High-temperature corrosion materials behavior

Magnesium corrosion behavior

Materials samples, corrosion behavior

Metallurgical behaviors corrosion

Nickel alloys, corrosion behavior

Phosphates, corrosion behavior

Polarization behavior, corrosion rate

Polyester resins corrosion behavior

Specific factors characterizing corrosion behavior

Suspended corrosion products, behavior

© 2024 chempedia.info