Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excellent Corrosion Resistance

A passive layer on the metal gives tantalum excellent corrosion resistance and makes the metal suitable for use in chemical industry for applications where the chemical attack is very strong. Tantalum is in fact as resistant as platinum to many corrosive agents and has replaced platinum in laboratory ware and weights in analytical balances. In the chemical industry it is used as liners for reactors and for manufacturing corrosion- and heat-resistant equipment. [Pg.569]


Titanium, when pure, is a lustrous, white metal. It has a low density, good strength, is easily fabricated, and has excellent corrosion resistance. It is ductile only when it is free of oxygen. The metal, which burns in air, is the only element that burns in nitrogen. [Pg.75]

Hafnium neutron absorption capabilities have caused its alloys to be proposed as separator sheets to allow closer spacing of spent nuclear fuel rods in interim holding ponds. Hafnium is the preferred material of constmction for certain critical mass situations in spent fuel reprocessing plants where hafnium s excellent corrosion resistance to nitric acid is also important. [Pg.443]

Lead is one of the most stable of fabricated materials because of excellent corrosion resistance to air, water, and soil. An initial reaction with these elements results in the formation of protective coatings of insoluble lead compounds. For example, in the presence of oxygen, water attacks lead, but if the water contains carbonates and siUcates, protective films or tarnishes form and the corrosion becomes exceedingly slow. [Pg.33]

Lead—silver alloys are used extensively as soft solders these contain 1—6 wt % silver. Lead—silver solders have a narrower free2ing range and higher melting point (304°C) than conventional solders. Solders containing 2.5 wt % silver or less are used either as binary alloys or combined with 0.5—2 wt % tin. Lead—silver solders have excellent corrosion resistance. The composition of lead—silver solders is Hsted in ASTM B32-93 (solder alloys) (7). [Pg.61]

The excellent corrosion-resistant lead dioxide, Pb02, film formed on anodes and lead—acid battery positive grids in sulfuric acid has enabled lead insoluble anodes and lead—acid batteries to maintain the dominant positions in their respective fields. [Pg.63]

The most widely used austenitic stainless steel is Type 304, known as 18—8. It has excellent corrosion resistance and, because of its austenitic stmcture, excellent ductihty. It may be deep-drawn or stretch formed. It can be readily welded, but carbide precipitation must be avoided in and near the weld by cooling rapidly enough after welding. Where carbide precipitation presents problems. Types 321, 347, or 304L may be used. The appHcations of Types 304 are wide and varied, including kitchen equipment and utensils, dairy installations, transportation equipment, and oil-, chemical-, paper- (qv), and food-processing (qv) machinery. [Pg.399]

The corrosion behavior of tantalum is weU-documented (46). Technically, the excellent corrosion resistance of the metal reflects the chemical properties of the thermal oxide always present on the surface of the metal. This very adherent oxide layer makes tantalum one of the most corrosion-resistant metals to many chemicals at temperatures below 150°C. Tantalum is not attacked by most mineral acids, including aqua regia, perchloric acid, nitric acid, and concentrated sulfuric acid below 175°C. Tantalum is inert to most organic compounds organic acids, alcohols, ketones, esters, and phenols do not attack tantalum. [Pg.331]

The excellent corrosion resistance means that tantalum is often the metal of choice for processes carried out in oxidising environments or when freedom from reactor contamination of the product or side reactions are necessary, as in food and pharmaceutical processing. Frequently, the initial investment is relatively high, but this is offset by low replacement costs owing to the durabiUty of the metal. [Pg.331]

The titanium oxide film consists of mtile or anatase (31) and is typically 250-A thick. It is insoluble, repairable, and nonporous in many chemical media and provides excellent corrosion resistance. The oxide is fully stable in aqueous environments over a range of pH, from highly oxidizing to mildly reducing. However, when this oxide film is broken, the corrosion rate is very rapid. Usually the presence of a small amount of water is sufficient to repair the damaged oxide film. In a seawater solution, this film is maintained in the passive region from ca 0.2 to 10 V versus the saturated calomel electrode (32,33). [Pg.102]

Zirconium is used as a containment material for the uranium oxide fuel pellets in nuclear power reactors (see Nuclearreactors). Zirconium is particularly usehil for this appHcation because of its ready availabiUty, good ductiUty, resistance to radiation damage, low thermal-neutron absorption cross section 18 x 10 ° ra (0.18 bams), and excellent corrosion resistance in pressurized hot water up to 350°C. Zirconium is used as an alloy strengthening agent in aluminum and magnesium, and as the burning component in flash bulbs. It is employed as a corrosion-resistant metal in the chemical process industry, and as pressure-vessel material of constmction in the ASME Boiler and Pressure Vessel Codes. [Pg.426]

Zirconium is totally resistant to attack of hydrochloric acid in all concentrations to temperatures well above boiling (Fig. 2). Aeration has no effect, but oxidizing agents such as cupric or ferric ions may cause pitting. Zirconium also has excellent corrosion resistance to hydrobromic and hydriodic acid. [Pg.429]

Despite their higher cost, tin babbitts are often preferred over lead for their excellent corrosion resistance, easy bonding, and less tendency for segregation. SAE 12 (ASTM Grade 2) is widely used in both automotive and industrial bearings (13) ASTM Grade 3 and SAE 11 also find extensive industrial use. [Pg.3]

Materials of Construction. Glass has excellent corrosion-resistance to wet or dry bromine. Lead is very usefiil for bromine service if water is less than 70 ppm. The bromine corrosion rate increases with concentrations of water and organics. Tantalum and niobium have excellent corrosion-resistance to wet or dry bromine. Nickel has usefiil resistance for dry bromine but is rapidly attacked by wet bromine. The fluoropolymers Kynar, Halar, and Teflon are highly resistant to bromine but are somewhat permeable. The rate depends on temperature, pressure, and stmcture (density) of fluoropolymer (63). [Pg.288]

Of the several leaded nickel—silveis, C782 is one of the most commonly used. This alloy is not hot piocessible and has limited cold processing capacity. It is usually available as strip for appHcation as keystock, watch parts, and plates because of its excellent corrosion resistance, hardness, and machinabihty. [Pg.234]

High-silicon cast irons have excellent corrosion resistance. Sih-con content is 13 to 16 percent. This material is known as Durion. Adding 4 percent Cr yields a product called Durichlor, which has improved resistance in the presence of oxidizing agents. These alloys are not readily machined or welded. [Pg.2443]

The most chemical-resistant plastic commercially available today is tetrafluoroethylene or TFE (Teflon). This thermoplastic is practically unaffected by all alkahes and acids except fluorine and chlorine gas at elevated temperatures and molten metals. It retains its properties up to 260°C (500°F). Chlorotrifluoroethylene or CTFE (Kel-F, Plaskon) also possesses excellent corrosion resistance to almost all acids and alkalies up to 180°C (350°F). A Teflon derivative has been developed from the copolymerization of tetrafluoroethylene and hexafluoropropylene. This resin, FEP, has similar properties to TFE except that it is not recommended for continuous exposures at temperatures above 200°C (400°F). Also, FEP can be extruded on conventional extrusion equipment, while TFE parts must be made by comphcated powder-metallurgy techniques. Another version is poly-vinylidene fluoride, or PVF2 (Kynar), which has excellent resistance to alkahes and acids to 150°C (300°F). It can be extruded. A more recent development is a copolymer of CTFE and ethylene (Halar). This material has excellent resistance to strong inorganic acids, bases, and salts up to 150°C. It also can be extruded. [Pg.2457]

Series major additive Mn Al + 1 Mn Moderate strength, ductile, excellent corrosion resistance roofing sheet, cooking pans, drinks can bodies. [Pg.9]

The excellent corrosion resistance over a wide range of operating conditions and readily available methods of fabrication by welding and other means of shaping metals make these steels the most extensively used throughout the chemical and allied industries. [Pg.68]

Fluorinated polymers stand out sharply against other construction materials for their excellent corrosion resistance and high-temperature stability. In this respect they are not only superior to other plastics but also to platinum, gold, glass, enamel and special alloys. The fluorinated plastics used in process plants are polytetrafluorethylene (PTFE), fluorinated ethylene/ propylene (FEP), polytrifiuoromonochlorethylene (PTFCE) and polyvinyl fluoride (PVF). They are much more expensive than other polymers and so are only economical in special situations [59]. [Pg.116]

Series Mg alloys (0.3-5%) good strength and weldability coupled with excellent corrosion resistance in... [Pg.220]

Processing and storage equipment for many chemicals, including acetaldehyde, formaldehyde, nylon salt, methyl methacrylate, carbon tetrachloride, glycerol, triacetin, proprionic acid, acetic acid and acetic anhydride, is manufactured from aluminium alloys, primarily because of their excellent corrosion resistance. [Pg.672]

Rapid solidification technology has been applied to several magnesium alloy systems and extruded material of some of these systems have exhibited excellent corrosion resistance. [Pg.758]

General Titanium is intrinsically very reactive, so that whenever the metal surface is exposed to air, or to any environment containing available oxygen, a thin tenacious surface film of oxide is formed. This oxide, which is present on fabricated titanium surfaces at normal or slightly elevated temperatures, has been identified as rutile, a tetragonal form of titanium dioxide, and it is the presence of this surface film which confers upon titanium excellent corrosion resistance in a wide range of corrosive media. [Pg.866]

For some purposes where the strength and ductility of steel are not prerequisites, other metals or materials may be used to advantage, particularly when the component or article is not a load-bearing one. Some of the non-ferrous metals and plastics materials are extremely useful in this respect, especially the latter with their excellent corrosion-resistant properties and ease of formability. Non-ferrous metals in sheet form are often used as roof covering. In such situations they could well become subject to condensation. Condensation could be the result of thermal pumping or internal conditions. Under conditions in which condensation can occur, copper is not normally attacked, but lead, zinc and aluminium may be attacked and corrode from the inside of the building outwards. [Pg.50]

Silicate binders are used in conjunction with zinc powder to give paints of excellent corrosion resistance. The organo-silicates, e.g. ethyl orthosilicate, are most commonly used. The full potential of this type of binder has probably not yet been exploited. [Pg.585]

Pure platinum is malleable and ductile with excellent corrosion resistance. When alloyed with cobalt, it has good magnetic properties (76.7 W% Pt, 23.3 W% Co). [Pg.162]

No attempt was made to measure CO2 in these experiments. By increasing the temperature to 320°C, catalyst deactivation was prevented, and no carbon residue could be detected on the spent catalyst. Thus, temperature can be expected to significantly shift the reaction pathways of organic contaminants. In this study, and in all other studies, excellent corrosion resistance was observed for the corrosion coupons. [Pg.312]

Aluminum and silicon bronzes are very popular in the process industries because they combine good strength with corrosion resistance. Copper-beryllium alloys offer the greatest strength and excellent corrosion resistance in seawater and are resistant to stress-corrosion cracking in hydrogen sulfide. [Pg.34]


See other pages where Excellent Corrosion Resistance is mentioned: [Pg.51]    [Pg.347]    [Pg.119]    [Pg.5]    [Pg.5]    [Pg.45]    [Pg.57]    [Pg.330]    [Pg.37]    [Pg.107]    [Pg.116]    [Pg.11]    [Pg.606]    [Pg.116]    [Pg.220]    [Pg.238]    [Pg.372]    [Pg.461]    [Pg.864]    [Pg.876]    [Pg.890]    [Pg.34]    [Pg.35]   


SEARCH



Corrosion resistance

Excel

Excellence

© 2024 chempedia.info