Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Minimizing corrosion

Black J. (1988) Does corrosion matter J. Bone Jt. Surg., 70B (4), 517-520 discusses issues of importance of understanding corrosion, minimizing it, and recognizing it can be important for the patient. [Pg.526]

Most common corrosives, such as strong acids in solution and strong bases as solids or solutions, can cause severe burns and damage to skin or eyes upon contact. When using corrosives, minimizing exposure is obviously very important. By using proper precautions, however, you can safely use corrosives in your laboratory work. [Pg.219]

Assess the level of risk based on likelihood of exposure and concentration of the corrosive. Minimize the risk by using a noncorrosive or less-corrosive chemical (if possible), eliminating exposure possibilities by using chemical goggles and gloves and/or working in a chemical hood. Add acid to water, when diluting concentrated solutions. [Pg.230]

Corrosion problems often dictate that a particularly corrosive component be removed early to minimize the use of expensive materials of construction. [Pg.132]

A first operation on the crude, desalting (washing by water and caustic), extracts salts (NaCl, KCl and the MgCb that is cdn eft4rdJt6 NaCl by the caustic), reduces acid corrosion as well as it minimizes fouling and deposits. /... [Pg.367]

It should be mentioned that as well as for metals the passivation of semiconductors (particularly on Si, GaAs, InP) is also a subject of intense investigation. However, the goal is mostly not the suppression of corrosion but either the fonnation of a dielectric layer that can be exploited for devices (MIS stmctures) or the minimization of interface states (dangling bonds) on the semiconductor surface [63, 64]. [Pg.2724]

A remarkable iron pillar, dating to about A.D. 400, remains standing today in Delhi, India. This solid shaft of wrought iron is about 71/4 m high by 40 cm in diameter. Corrosion to the pillar has been minimal although it has been exposed to the weather since its erection. [Pg.57]

Although many problems still remain to be overcome to make the process practical (not the least of which is the question of the corrosive nature of aqueous HBr and the minimization of formation of any higher brominated methanes), the selective conversion of methane to methyl alcohol without going through syn-gas has promise. Furthermore, the process could be operated in relatively low-capital-demand-ing plants (in contrast to syn-gas production) and in practically any location, making transportation of natural gas from less accessible locations in the form of convenient liquid methyl alcohol possible. [Pg.212]

In unalloyed steel containers formamide discolors slowly during shipment and storage. Both copper and brass are also subject to corrosion, particularly in the presence of water. Lead is less readily attacked. Aluminum and stainless steel are resistant to attack by formamide and should be used for shipping and storage containers where the color of the product is important or when metallic impurities must be minimized. Formamide attacks natural mbber but not neoprene. As a result of the solvent action of formamide, most protective paints and finishes are unsatisfactory when in contact with formamide. Therefore, formamide is best shipped in containers made of stainless steel or in dmms made of, or coated with, polyethylene. Formamide supphed by BASF is packed in Lupolen dmms (230 kg) or Lupolen canisters (60 kg) both in continental Europe and overseas. [Pg.509]

Polymer Electrolyte Fuel Cell. The electrolyte in a PEFC is an ion-exchange (qv) membrane, a fluorinated sulfonic acid polymer, which is a proton conductor (see Membrane technology). The only Hquid present in this fuel cell is the product water thus corrosion problems are minimal. Water management in the membrane is critical for efficient performance. The fuel cell must operate under conditions where the by-product water does not evaporate faster than it is produced because the membrane must be hydrated to maintain acceptable proton conductivity. Because of the limitation on the operating temperature, usually less than 120°C, H2-rich gas having Htde or no ([Pg.578]

Cation exchangers are regenerated with mineral acids when used in the form. Sulfuric acid [8014-95-7] is preferred over hydrochloric acid [7647-01-0], HCl, in many countries because it is less expensive and less corrosive. However, the use of hydrochloric acid is the best method of overcoming precipitation problems in installations which deionize water with high concentrations of barium or calcium compared to other cations. A 4% acid concentration is common, although sulfuric acid regenerations may start as low as 0.8—1% to minimize calcium sulfate [7718-18-9] precipitation. [Pg.384]

Because EP additives ate effective only by chemical action, their general use should be avoided to minimize possible corrosion difficulties and shortened lubricant life in any appHcation where they ate not necessary. For long-time operation of machines, conversion from boundary to hill-film operation is desirable through changes such as higher oil viscosity, lowered loading, or improved surface finish. [Pg.236]

The basic seed processing plant design is based on 70% removal of the sulfur contained in the coal used (Montana Rosebud), which satisfies NSPS requirements. Virtually complete sulfur removal appears to be feasible and can be considered as a design alternative to minimize potential corrosion problems related to sulfur in the gas. The estimated reduction in plant performance for complete removal is on the order of 1/4 percentage point. The size of the seed processing plant would have to be increased by roughly 40% but the corresponding additional cost appears tolerable. The constmction time for the 500 MW plant is estimated to be ca five years. [Pg.425]

Maleic Anhydride. The ACGIH threshold limit value in air for maleic anhydride is 0.25 ppm and the OSHA permissible exposure level (PEL) is also 0.25 ppm (181). Maleic anhydride is a corrosive irritant to eyes, skin, and mucous membranes. Pulmonary edema (collection of fluid in the lungs) can result from airborne exposure. Skin contact should be avoided by the use of mbber gloves. Dust respirators should be used when maleic anhydride dust is present. Maleic anhydride is combustible when exposed to heat or flame and can react vigorously on contact with oxidizers. The material reacts exothermically with water or steam. Violent decompositions of maleic anhydride can be catalyzed at high temperature by strong bases (sodium hydroxide, potassium hydroxide, calcium hydroxide, alkaU metals, and amines). Precaution should be taken during the manufacture and use of maleic anhydride to minimize the presence of basic materials. [Pg.459]

The rate (kinetics) and the completeness (fraction dissolved) of oxide fuel dissolution is an inverse function of fuel bum-up (16—18). This phenomenon becomes a significant concern in the dissolution of high bum-up MO fuels (19). The insoluble soHds are removed from the dissolver solution by either filtration or centrifugation prior to solvent extraction. Both financial considerations and the need for safeguards make accounting for the fissile content of the insoluble soHds an important challenge for the commercial reprocessor. If hydrofluoric acid is required to assist in the dissolution, the excess fluoride ion must be complexed with aluminum nitrate to minimize corrosion to the stainless steel used throughout the facility. Also, uranium fluoride complexes are inextractable and formation of them needs to be prevented. [Pg.204]

Health and Safety. Protective clothing that is compatible with the remover formula must be worn. Caustic soda baths should be ventilated to remove vapors from the work area. Most caustic removers are corrosive and cause severe bums with minimal contact to the skin. Canister respirators that are compatible with the remover should be worn. [Pg.553]

Vapor-phase catalytic oxidation of dutene is a mote direct route to the dianhydtide. Hbls in Europe apparently uses this route, which eliminates the need for a separate dehydration step and for handling of any oxidants or solvents. Continuous operation is faciHtated, corrosion is minimized, and product recovery is simplified. The vapor-phase oxidation of dutene is similar to that of o-xylene to phthaHc anhydtide, and phthaHc anhydtide units can be... [Pg.499]

The Rectisol process is more readily appHcable for acid gas removal from synthesis gas made by partial oxidation of heavy feedstocks. The solvents used in Purisol, Fluor Solvent, and Selexol processes have low vapor pressures and hence solution losses are minimal. Absorption systems are generally corrosion-free. [Pg.349]

Refrigerated storage tanks are iasulated usiag great care to minimize heat loss and access of air and moisture to the iasulation or metal surface. In double-wak tanks, the annular space is usuaky fiked with perlite and the external surface of the outer tank is painted for corrosion protection. [Pg.354]

The bottoms from the stripper (40—60 wt % acid) are sent to an acid reconcentration unit for upgrading to the proper acid strength and recycling to the reactor. Because of the associated high energy requirements, reconcentration of the diluted sulfuric acid is a cosdy operation. However, a propylene gas stripping process, which utilizes only a small amount of added water for hydrolysis, has been described (63). In this modification, the equiUbrium quantity of isopropyl alcohol is stripped so that acid is recycled without reconcentration. Kquilibrium is attained rapidly at 50°C and isopropyl alcohol is removed from the hydrolysis mixture. Similarly, the weak sulfuric acid process minimizes the reconcentration of the acid and its associated corrosion and pollution problems. [Pg.108]


See other pages where Minimizing corrosion is mentioned: [Pg.444]    [Pg.628]    [Pg.454]    [Pg.616]    [Pg.444]    [Pg.628]    [Pg.454]    [Pg.616]    [Pg.89]    [Pg.431]    [Pg.440]    [Pg.442]    [Pg.280]    [Pg.425]    [Pg.578]    [Pg.172]    [Pg.384]    [Pg.508]    [Pg.266]    [Pg.290]    [Pg.211]    [Pg.331]    [Pg.222]    [Pg.244]    [Pg.419]    [Pg.518]    [Pg.49]    [Pg.54]    [Pg.56]    [Pg.125]    [Pg.7]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Corrosion minimization

Corrosion minimization

Corrosion stainless steel minimizes

© 2024 chempedia.info