Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nuclear power reactors 162

The basic requirements of a reactor are 1) fissionable material in a geometry that inhibits the escape of neutrons, 2) a high likelihood that neutron capture causes fission, 3) control of the neutron production to prevent a runaway reaction, and 4) removal of the heat generated in operation and after shutdown. The inability to completely turnoff the heat evolution when the chain reaction stops is a safety problem that distinguishes a nuclear reactor from a fossil-fuel burning power plant. [Pg.205]


The uses of nuclear fuels to generate electrical power, to make isotopes for peaceful purposes, and to make explosives are well known. The estimated world-wide capacity of the 429 nuclear power reactors in operation in January 1990 amounted to about 311,000 megawatts. [Pg.202]

Its importance depends on the nuclear property of being readily fissionable with neutrons and its availability in quantity. The world s nuclear-power reactors are now producing about 20,000 kg of plutonium/yr. By 1982 it was estimated that about 300,000 kg had accumulated. The various nuclear applications of plutonium are well known. 238Pu has been used in the Apollo lunar missions to power seismic and other equipment on the lunar surface. As with neptunium and uranium, plutonium metal can be prepared by reduction of the trifluoride with alkaline-earth metals. [Pg.205]

One of the most significant sources of change in isotope ratios is caused by the small mass differences between isotopes and their effects on the physical properties of elements and compounds. For example, ordinary water (mostly Ej O) has a lower density, lower boiling point, and higher vapor pressure than does heavy water (mostly H2 0). Other major changes can occur through exchange processes. Such physical and kinetic differences lead to natural local fractionation of isotopes. Artificial fractionation (enrichment or depletion) of uranium isotopes is the basis for construction of atomic bombs, nuclear power reactors, and depleted uranium weapons. [Pg.353]

Nuclear Applications. Powder metallurgy is used in the fabrication of fuel elements as well as control, shielding, moderator, and other components of nuclear-power reactors (63) (see Nuclearreactors). The materials for fuel, moderator, and control parts of a reactor are thermodynamically unstable if heated to melting temperatures. These same materials are stable under P/M process conditions. It is possible, for example, to incorporate uranium or ceramic compounds in a metallic matrix, or to produce parts that are similar in the size and shape desired without effecting drastic changes in either the stmcture or surface conditions. OnlyHttle post-sintering treatment is necessary. [Pg.192]

Lightwater reactors, the primary type of nuclear power reactor operated throughout the world, are fueled with uranium dioxide [1344-57-6] UO2 miched from the naturally occurring concentration of 0.71% uranium-235 [15117-96-17, to approximately 3% (1). As of this writing all civiUan nuclear... [Pg.184]

Spent Fuel Treatment. Spent fuel assembhes from nuclear power reactors are highly radioactive because they contain fission products. Relatively few options are available for the treatment of spent fuel. The tubes and the fuel matrix provide considerable containment against attack and release of nucHdes. To minimi2e the volume of spent fuel that must be shipped or disposed of, consoHdation of rods in assembhes into compact bundles of fuel rods has been successfully tested. Alternatively, intact assembhes can be encased in metal containers. [Pg.229]

Fig. 2. Volume of low level radioactive waste per U.S. nuclear power reactor (weighted industry median). The decrease over the period 1980—1994 was... Fig. 2. Volume of low level radioactive waste per U.S. nuclear power reactor (weighted industry median). The decrease over the period 1980—1994 was...
Total reserves of thorium at commercial price in 1995 was estimated to be >2 x 10 metric tons of Th02 (H)- Thorium is a potential fuel for nuclear power reactors. It has a 3—4 times higher natural abundance than U and the separation of the product from Th is both technically easier and less expensive than the enrichment of in However, side-reaction products, such as and the intense a- and y-active decay products lead to a high... [Pg.43]

Because of its low neutron absorption, zirconium is an attractive stmctural material and fuel cladding for nuclear power reactors, but it has low strength and highly variable corrosion behavior. However, ZircaHoy-2, with a nominal composition of 1.5 wt % tin, 0.12 wt % iron, 0.05 wt % nickel, 0.10 wt % chromium, and the remainder zirconium, can be used ia all nuclear power reactors that employ pressurized water as coolant and moderator (see... [Pg.63]

The demand for uranium ia the commercial sector is primarily determined by the consumption and inventory requirements of nuclear power reactors. In March 1997, there were 433 nuclear power plants operating worldwide with a combined capacity of about 345 GWe (net gigawatts electric)... [Pg.316]

Zirconium is used as a containment material for the uranium oxide fuel pellets in nuclear power reactors (see Nuclearreactors). Zirconium is particularly usehil for this appHcation because of its ready availabiUty, good ductiUty, resistance to radiation damage, low thermal-neutron absorption cross section 18 x 10 ° ra (0.18 bams), and excellent corrosion resistance in pressurized hot water up to 350°C. Zirconium is used as an alloy strengthening agent in aluminum and magnesium, and as the burning component in flash bulbs. It is employed as a corrosion-resistant metal in the chemical process industry, and as pressure-vessel material of constmction in the ASME Boiler and Pressure Vessel Codes. [Pg.426]

A number of special processes have been developed for difficult separations, such as the separation of the stable isotopes of uranium and those of other elements (see Nuclear reactors Uraniumand uranium compounds). Two of these processes, gaseous diffusion and gas centrifugation, are used by several nations on a multibillion doUar scale to separate partially the uranium isotopes and to produce a much more valuable fuel for nuclear power reactors. Because separation in these special processes depends upon the different rates of diffusion of the components, the processes are often referred to collectively as diffusion separation methods. There is also a thermal diffusion process used on a modest scale for the separation of heflum-group gases (qv) and on a laboratory scale for the separation of various other materials. Thermal diffusion is not discussed herein. [Pg.75]

During the operation of nuclear power reactors, which are fuelled with ceramic UO2 fuel rods, the fission of the nuclei leads to die formation of fission products which are isotopes of elements in all of tire Groups of the Periodic Table. The major fission products, present in 1-10% abundance, fall into five groups divided according to the chemical interaction of each product with the fuel ... [Pg.249]

Humans control all chemical and nuclear processes, and to some extent all accidents result from human error, if not directly in the accident then in the process design and in the process inadequate design to prevent human error. Some automatic systems such used in nuclear power reactors because the response time required is too short for human decisions. Even in these, human error can contribute to failure by inhibiting the systems. [Pg.163]

Nuclear power reactors cause the transmutation of chemicals (uranium and plutonium) to fission products using neutrons as the catalyst to produce heat. Fossil furnaces use the chemical reaction of carbon and oxygen to produce CO2 and other wastes to produce heat. There is only one reaction and one purpose for nuclear power reactors there is one reaction but many puiposes for fossil-burning furnaces there are myriad chemical processes and purposes. [Pg.261]

The primary motivation of PSAs is to assess the risk of the plant to the public. The immediate purpose of the RSS was to support the Price-Anderson hearings on liability insurance (i.e., assess the financial exposure of a nuclear power reactor operator) a purpose which, even today, is beyond PSA technology. However, PSA is sufficiently precise to provide relative risk comparisons of reactor designs and sites. These uses of PSA were presented at the Indian Point hearings, and in defense of Shoreham. The PSAs for the high-population-zone plants (Limerick, Zion, and Indian Point) were prepared to show that specific features of these plants compensate for the higher population density relative to plants studied in the RSS. [Pg.383]

Farmer, F. R., 1967, A New Approach in Containment and Siting of Nuclear Power Reactors, IAEA report ST3/PUB/154, Vienna. [Pg.478]

Kendall, H. W. Study Director, 1977, The Risks of Nuclear Power Reactors Union of ( Scientists, Cambridge, MA, August. [Pg.483]

Ixwis, E. G., 1977, Nuclear Power Reactor Safety, Wiley, NY. [Pg.483]

Fermi began to assemble a nuclear pile in a squash court under the football stands at the University of Chicago. This was really the first nuclear power reactor, in which a controlled, self-sustaining series of fission processes occurred. The controls consisted of cadmium rods inserted to absorb neutrons and keep the reactor from going... [Pg.500]

HLW comprises most of the radioactivity associated with nuclear waste. Because that designation can cover radioactive waste from more than one source, the term spent nuclear fuel (SNF) will be used to discuss HLW originating from commercial nuclear reactors. LLW comprises nearly 90 percent of the volume of nuclear waste but little of the radioactivity. Nuclear power reactors produce SNF and most of the nation s LLW, although there are approximately 20,000 different sources of LLW. The name SNF is a bit of a misnomer because it implies that there is no useful material left in the fuel, when in fact some fissionable material is left in it. [Pg.879]

There are various types of nuclear power reactors, including boiling water reactors (BWR) and pressurized water reactors (PLWR or LWR), which are both light-water reactor (LWR) designs and are cooled and moderated by water. There also are pressurized heavy-water reactor (PHWR or HWR) designs. [Pg.62]

The radiation-treated cables find wide applications in control instmmentation of nuclear power reactors, particle accelerators, aviation, and telephone equipments. Usually PE and PVC are radiation cross-linked for production of such cables. The heat shrinkable foils are widely used in packaging, electrical and electronic industries. The radiation cross-linked PE possesses the property of elastic memory which is utilized to produce heat shrinkable products. [Pg.874]

IAEA, 1998, Nuclear Power Reactors in the World, April 1998 Edition, Reference Data Series No. 2, International Atomic Energy Agency, Vienna. [Pg.91]

In short, we expect that most nuclear power reactors will be renewing their licenses eventually. Clearly, owners of these nuclear units believe that operating for an additional 20 years is a good business decision. [Pg.109]


See other pages where Nuclear power reactors 162 is mentioned: [Pg.201]    [Pg.213]    [Pg.443]    [Pg.129]    [Pg.179]    [Pg.92]    [Pg.535]    [Pg.194]    [Pg.50]    [Pg.205]    [Pg.864]    [Pg.879]    [Pg.879]    [Pg.1289]    [Pg.62]    [Pg.904]    [Pg.208]    [Pg.18]    [Pg.27]    [Pg.333]    [Pg.429]   
See also in sourсe #XX -- [ Pg.353 ]

See also in sourсe #XX -- [ Pg.161 ]

See also in sourсe #XX -- [ Pg.707 , Pg.740 ]




SEARCH



CANDU nuclear power reactor

China nuclear power reactors

Construction worldwide nuclear power reactors under

Energy nuclear power reactors

GENERIC SAFETY ISSUES FOR LIGHT WATER REACTOR NUCLEAR POWER PLANTS

Metals and alloys in nuclear power reactors

Modular nuclear power reactors

Nuclear Power Group reactor vessel

Nuclear Power Reactor Cooling Systems

Nuclear power

Nuclear power boiling-water reactor

Nuclear power breeder reactors

Nuclear power fast-breeder reactors

Nuclear power generation VHTR reactors

Nuclear power modem reactors

Nuclear power plants breeder reactor

Nuclear power pressurised-water reactor

Nuclear power reactor coolant systems

Nuclear power reactor generations

Nuclear power reactors PHWRs

Nuclear power reactors alloys

Nuclear power reactors fuel rods

Nuclear power reactors heavy water reactor

Nuclear power reactors light water reactor

Nuclear power reactors liquid metal coolants

Nuclear power reactors pressurized water reactor

Nuclear power reactors, heavy-water

Nuclear power small reactor systems

Nuclear power thermal reactors

Nuclear reactors

Pressurized water reactors nuclear power plants

Radionuclides recovery from nuclear power reactor fuels

Reactor pressure vessel (RPV) embrittlement in operational nuclear power plants

Worldwide nuclear power reactors under

© 2024 chempedia.info