Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

A Corrosion Behavior

In general only poor corrosion behavior is attributed to Mg and its alloys. This is mainly true when Mg is in contact with other metals and alloys in accordance with the electrochemical potential series of metals. Therefore, special care has to be taken to avoid conductive contact between Mg alloys and other metals with different electrochemical potentials. When joining Mg parts with other materials, insulating washers, surface-coated screws or nonconducting films and surface coatings can be applied. When investigating a Mg [Pg.169]


Robin, A., Corrosion behavior of niobium, tantalum and their alloys in boiling sulfuric acid solutions, 15, 317-323,1997. [Pg.120]

Silver exhibits a corrosion behavior which hardly resembles that of any of the other metals described. Its unique behavior is to a large extent governed by the existence of Ag upon dissolution of silver into the aqueous layer. Ag2S is the most abundant component of the corrosion products formed. AgCl can form in environments with high chloride content, whereas no oxides, nitrates, sulfates, or carbonates have been reported in coimection with atmospheric exposure. Silver exhibits corrosion rates comparable to those of aluminum, lower than those of zinc, and much lower than those of iron. [Pg.547]

Although Hitec is nonflammable, it is a strong oxidizer and supports the combustion of other materials. Consequendy, combustible materials must be excluded from contact with the molten salt. Hitec is compatible with carbon steel at temperatures up to 450°C. At higher temperatures, low alloy or austenitic stainless steel is recommended. Adding water to Hitec does not appreciably alter its corrosion behavior. [Pg.505]

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

Creep tests are ideally suited for the measurement of long-term polymer properties in aggressive environments. Both the time to failure and the ultimate elongation in such creep tests tend to be reduced. Another test to determine plastic behavior in a corrosive atmosphere is a prestressed creep test in which the specimens are prestressed at different loads, which are lower than the creep load, before the final creep test (11). [Pg.505]

Because of its low neutron absorption, zirconium is an attractive stmctural material and fuel cladding for nuclear power reactors, but it has low strength and highly variable corrosion behavior. However, ZircaHoy-2, with a nominal composition of 1.5 wt % tin, 0.12 wt % iron, 0.05 wt % nickel, 0.10 wt % chromium, and the remainder zirconium, can be used ia all nuclear power reactors that employ pressurized water as coolant and moderator (see... [Pg.63]

A complete discussion of the corrosion behavior of alloy systems and the influence of metallurgical factors on each is available (30). Some of these factors in a few technologically important alloy systems are discussed here. [Pg.280]

Rapid-Scan Corrosion Behavior Diagram (CBD) Basically, all the same equipment used in the conductance of an ASTM G5 slow-scan polarization study is used for rapid-scan CBDs (that is, a standard test cell, potentiostat, voltmeters, log converters, X-Y recorders, and electronic potential scanning devices). The differences... [Pg.2431]

FIG. 28-10 Six possible types of behavior for an active/passive alloy in a corrosive environment. [Pg.2431]

The apphcation of an impressed alternating current on a metal specimen can generate information on the state of the surface of the specimen. The corrosion behavior of the surface of an electrode is related to the way in which that surface responds to this electrochemical circmt. The AC impedance technique involves the application of a small sinusoidal voltage across this circuit. The frequency of that alternating signal is varied. The voltage and current response of the system are measured. [Pg.2437]

Certain alloys frequently used in cooling water environments, notably aluminum and zinc, can be attacked vigorously at high pH. These metals are also significantly corroded at low pH and thus are said to be amphoteric. A plot of the corrosion behavior of aluminum as a function of pH when exposed to various compounds is shown in Fig. 8.1. The influence of various ions is often more important than solution pH in determining corrosion on aluminum. [Pg.185]

Copper-alloy corrosion behavior depends on the alloying elements added. Alloying copper with zinc increases corrosion rates in caustic solutions whereas nickel additions decrease corrosion rates. Silicon bronzes containing between 95% and 98% copper have corrosion rates as low as 2 mil/y (0.051 mm/y) at 140°F (60°C) in 30% caustic solutions. Figure 8.2 shows the corrosion rate in a 50% caustic soda evaporator as a function of nickel content. As is obvious, the corrosion rate falls to even lower values as nickel concentration increases. Caustic solutions attack zinc brasses at rates of 2 to 20 mil/y (0.051 to 0.51 mm/y). [Pg.187]

A comprehensive list of standard potentials is found in Ref. 7. Table 2-3 gives a few values for redox reactions. Since most metal ions react with OH ions to form solid corrosion products giving protective surface films, it is appropriate to represent the corrosion behavior of metals in aqueous solutions in terms of pH and Ufj. Figure 2-2 shows a Pourbaix diagram for the system Fe/HjO. The boundary lines correspond to the equilibria ... [Pg.39]

Heterogeneous surface areas consist of anodic regions at corrosion cells (see Section 2.2.4.2) and objects to be protected which have damaged coating. Local concentrations of the current density develop in the area of a defect and can be determined by measurements of field strength. These occur at the anode in a corrosion cell in the case of free corrosion or at a holiday in a coated object in the case of impressed current polarization (e.g., cathodic protection). Such methods are of general interest in ascertaining the corrosion behavior of metallic construction units... [Pg.123]

The determination and evaluation of potentiodynamic curves can only be used as a preliminary assessment of corrosion behavior. The protection current requirement and the limiting value for the potential control can only be determined from so-called chronopotentiostatic experiments as in DIN 50918. in systems that react with spontaneous activation after the protection current is switched off or there is a change in the operating conditions, quick-acting protection current devices must be used. Figure 8-6 shows the circuit diagram for such a potentiostat. [Pg.477]

Where erosion by a liquid-borne abrasive is involved, the behavior of a corrosion-resistant alloy will depend largely on the rate at which erosion removes the passive film and the rate at which it reforms. [Pg.270]

Biocorrosion of stainless steel is caused by exopolymer-producing bacteria. It can be shown that Fe is accumulated in the biofilm [2.62]. The effect of bacteria on the corrosion behavior of the Mo metal surface has also been investigated by XPS [2.63]. These last two investigations indicate a new field of research in which XPS can be employed successfully. XPS has also been used to study the corrosion of glasses [2.64], of polymer coatings on steel [2.65], of tooth-filling materials [2.66], and to investigate the role of surface hydroxyls of oxide films on metal [2.67] or other passive films. [Pg.26]

Clean metallic aluminum is extremely reactive. Even exposure to air at ordinary temperatures is sufficient to promote immediate oxidation. This reactivity is self-inhibiting, however, which determines the general corrosion behavior of aluminum and its alloys due to the formation of a thin, inert, adherent oxide film. In view of the great importance of the surface film, it can be thickened by anodizing in a bath of 15% sulfuric acid (H2SO4) solution or by cladding with a thin layer of an aluminum alloy containing 1 % zinc. [Pg.90]

The design of a plant has significant implications for its subsequent corrosion behavior. Good design minimizes corrosion risks whereas bad design promotes or exacerbates corrosion. [Pg.903]

The presence of tensile stress in a metal surface renders that surface more susceptible to many kinds of corrosion than the same material in a non-stressed condition. Similarly, the presence of compressive stress in the surface layer can be beneficial for corrosion behavior. [Pg.904]

If changes have been made to the process (e.g. if incoming water quality cannot be maintained or other uncertainties arise concerning the corrosion behavior of the construction materials) it is possible to incorporate coupons or probes of the material into the plant and monitor their corrosion behavior. This approach may be used to assist in the materials selection process for a replacement plant. Small coupons (typically, 25 x 50 mm) of any material may be suspended in the process stream and removed at intervals for weight loss determination and visual inspection for localized corrosion. Electrical resistance probes comprise short strands for the appropriate material electrically isolated from the item of plant. An electrical connection from each end of the probe is fed out of the plant to a control box. The box senses the electrical resistance of the probe. The probe s resistance rises as its cross-sectional area is lost through corrosion. [Pg.911]

A noteworthy study by Rhodin19 of the films on stainless steels was carried out mainly because such films largely determine the corrosion behavior of these alloys, but the way in which Rhodin used x-ray emission spectrography is of great interest in analytical chemistry. He stripped these films from the alloys and supported them upon Mylar Q/i mil thick) before determining their composition via x-ray emission spectrography. Films of metals were evaporated onto the same substrate to serve as standards. Rhodin s results are summarized in... [Pg.230]

A prepassivated platinum electrode and an electrode of the metal of interest have been used to follow the development of a biofilm to determine its effects on the corrosion behavior of structural materials. The time dependence of the open circuit potential of several stainless steels... [Pg.208]

Applications of Rp techniques have been reported by King et al. in a study of the corrosion behavior of iron pipes in environments containing SRB. In a similar study, Kasahara and Kajiyama" used Rp measurements with compensation of the ohmic drop and reported results for active and inactive SRB. Nivens et al. calculated the corrosion current density from experimental Rp data and Tafel slopes for 304 stainless steel exposed to a seawater medium containing the non-SRB Vibrio mtriegens. [Pg.211]

Figure 33.2 shows results obtained by studies of electrochemical noise for the corrosion behavior of carbon steel A516-70 in carbonate solutions with and without NaCl as an activator (Cheng et al., 2000). It can be seen that in ordinary carbonate solution the fluctuations of potential of a test electrode and the fluctuations of current flowing between a pair of identical electrodes are small. Added NaCl causes a drastic increase in intensity of the electrochemical noise. The PDS plots (Fig. 33.3) differ accordingly. [Pg.628]


See other pages where A Corrosion Behavior is mentioned: [Pg.194]    [Pg.161]    [Pg.161]    [Pg.194]    [Pg.161]    [Pg.161]    [Pg.398]    [Pg.190]    [Pg.279]    [Pg.283]    [Pg.2435]    [Pg.40]    [Pg.26]    [Pg.516]    [Pg.1266]    [Pg.1268]    [Pg.908]    [Pg.908]    [Pg.908]    [Pg.259]    [Pg.280]    [Pg.216]    [Pg.235]    [Pg.11]    [Pg.20]   


SEARCH



Corrosive behavior

© 2024 chempedia.info