Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cathodic protection continued

In order to install cathodic protection, continuity can be established by welding in extra rebars. However, at Florida DOT one approach has been to expose bars in damaged areas, grit blast them clean and apply arc sprayed zinc directly onto the steel and then across the steel surface. This provides galvanizing directly on the steel and SACP to the steel embedded in the concrete. Multiple continuity connections are established by the sprayed zinc. [Pg.189]

Thermoelectric devices represent niche markets, but as economic and environmental conditions continue to change, they appear poised to advance into more common use. Thermoelectric power generators are in use in many areas, including sateUites, deep-space probes, remote-area weather stations, undersea navigational devices, military and remote-area communications, and cathodic protection. [Pg.508]

Cathodic protection stations frequently operate under conditions that are continually changing. These include ... [Pg.233]

The danger of corrosion is in general greater for pipelines in industrial installations than in long-distance pipelines because in most cases cell formation occurs with steel-reinforced concrete foundations (see Section 4.3). This danger of corrosion can be overcome by local cathodic protection in areas of distinct industrial installations. The method resembles that of local cathodic protection [1]. The protected area is not limited, i.e., the pipelines are not electrically isolated from continuing and branching pipelines. [Pg.309]

For several years now, cable ducts have been manufactured from plastic pipes, which are watertight and form a continuous run of piping. In laying the ducts, low points can occur in which condensed water or water penetrating from the ends can collect. In many cases this water has led to corrosion damage in lead-sheathed cables. Lead-sheathed cables must therefore only be used in such ducts with an additional PE sheath of type A-PM2Y. Cathodic protection of these cables is not possible because of their complete insulation by the plastic pipe. [Pg.324]

The cathodic protection of reinforcing steel and stray current protection measures assume an extended electrical continuity through the reinforcing steel. This is mostly the case with rod-reinforced concrete structures however it should be verified by resistance measurements of the reinforcing network. To accomplish this, measuring cables should be connected to the reinforcing steel after removal of the concrete at different points widely separated from each other. To avoid contact resistances, the steel must be completely cleaned of rust at the contact points. [Pg.433]

In addition, with high solid content of the cooling water and at high flow velocities, severe corrosive conditions exist which continuously destroy surface films. Cathodic protection alone is not sufficient. Additional measures must be undertaken to promote the formation of a surface film. This is possible with iron anodes because the anodically produced hydrated iron oxide promotes surface film formation on copper. [Pg.469]

The cost and economics of cathodic protection depend on a variety of parameters so that general statements on costs are not really possible. In particular, the protection current requirement and the specific electrical resistance of the electrolyte in the surroundings of the object to be protected and the anodes can vary considerably and thus affect the costs. Usually electrochemical protection is particularly economical if the structure can be ensured a long service life, maintained in continuous operation, and if repair costs are very high. As a rough estimate, the installation costs of cathodic protection of uncoated metal structures are about 1 to 2% of the construction costs of the structure, and are 0.1 to 0.2% for coated surfaces. [Pg.491]

An alternative means of avoiding the hazard from fire is to bury the vessels or to employ the increasingly popular method of mounding. In either case, acknowledgment of the reduced hazard is indicated by the reduced separation distances (see Table 20.4). Since both burial and mounding preclude the possibility to monitor continuously the external condition of the vessels, very high-quality corrosion protection needs to be applied, often supplemented by cathodic protection, depending on soil conditions. [Pg.305]

Although iron pipes suffer from the same corrosion risk as steel pipelines, associated with the generation of a galvanic cell with a small anode and a large cathode, the risk is mitigated for iron pipelines because the electrical continuity is broken at every pipe joint. For this reason long-line currents are uncommon in iron lines and cathodic protection is rarely necessary. It also accounts for the ability to protect iron lines by the application of nonadherent polyethylene sleeving . [Pg.593]

A continuous polymer anode system has been developed specifically for the cathodic protection of buried pipelines and tanks. The anode, marketed under the trade name Anodeflex , consists of a continuous stranded copper conductor (6AWG) which is encased in a thick jacket of carbon-loaded polymer, overall diameter 12-5 mm. To prevent unintentional short circuits an insulating braid is sometimes applied to the outer surface of the conductive polymer. [Pg.186]

The anode is fixed to the concrete using non-metallic fixings and may be supplied as a prefabricated mesh or more often as a continuous anode strand which is laid over the surface of the structure to be protected. The spacing between the anode strands may be adjusted to give the required current distribution and current density per unit area of concrete necessary to provide cathodic protection to a particular structure. [Pg.190]

Scrap steel In some fortunate instances a disused pipeline or other metal structure in close proximity to the project requiring cathodic protection may be used. However, it is essential in cases of scrap steel or iron groundbeds to ensure that the steelwork is completely electrically continuous, and multiple cable connections to various parts of the groundbed must be used to ensure a sufficient life. Preferential corrosion can take place in the vicinity of cable connections resulting in early electrical disconnection, hence the necessity for multiple connections. [Pg.208]

If a continuous metallic structure is immersed in an electrolyte, e.g. placed in the sea or sea-bed or buried in the soil, stray direct currents from nearby electric installations of which parts are not insulated from the soil may flow to and from the structure. At points where the stray current enters the immersed structure the potential will be lowered and electrical protection (cathodic protection) or partial electrical protection will occur. At points where the stray current leaves the immersed structure the potential will become more positive and corrosion may occur with serious consequences. [Pg.228]

Interaction tests should be made on all unprotected structures in the vicinity of a proposed cathodic protection installation, and should be repeated annually or at some other suitable interval to ensure that alterations in the layout of plant or in the electrical conditions are taken into account. It is most convenient if the tests on all unprotected pipes or cables are made at the same time, the potential measurements being synchronised with the regular switching on and off of the protection current. It may then be convenient to continue with further tests to confirm that any remedial measures applied to one installation do not adversely affect other installations. [Pg.239]

In plain tinplate cans for acid foods, tin provides cathodic protection to steel (3,4). The slow dissolution of tin prevents steel corrosion. Many investigators (5-1I) have defined this mechanism in detail and have shown that the tin dissolution rate is a function of the cathodic activity of the base steel, the steel area exposed through the tin and the tin-iron alloy layers, and the stannous ion concentration. Kamm et al. showed that control of the growth of the tin—iron alloy layer provides a nearly continuous tin-iron alloy layer and improves the corrosion resistance of heavily coated (over 45 X 10"6 in. tin) ETP for mildly acid food products in which tin provides cathodic protection to steel (12). The controlled tin-iron alloy layer reduces the area of steel exposed to the product. ETP with the controlled alloy is designated type K, and since 1964, 75 type K ETP has been used to provide the same protection as 100 ETP provided previously (13). [Pg.9]

The continued effectiveness of a cathodic protection system shall be monitored in accordance with para. GR-5.3.1.1(c). [Pg.68]

Examinations shall be made as required to maintain continuous and effective operation of the cathodic protection system. [Pg.69]

As a means of maintaining the integrity of its pipeline system, each operating company shall establish and implement procedures for continuing surveillance of its facilities. Studies shall be initiated and action shall be taken where unusual operating and maintenance conditions occur, such as failures, leakage history, drop in flow efficiency due to internal corrosion, or substantial changes in cathodic protection requirements. [Pg.73]


See other pages where Cathodic protection continued is mentioned: [Pg.538]    [Pg.264]    [Pg.272]    [Pg.538]    [Pg.264]    [Pg.272]    [Pg.2421]    [Pg.15]    [Pg.233]    [Pg.243]    [Pg.254]    [Pg.261]    [Pg.270]    [Pg.396]    [Pg.472]    [Pg.106]    [Pg.1061]    [Pg.59]    [Pg.386]    [Pg.667]    [Pg.708]    [Pg.1304]    [Pg.647]    [Pg.657]    [Pg.83]    [Pg.703]    [Pg.69]    [Pg.74]    [Pg.171]   


SEARCH



Cathodic protection

Cathodic protection continued advantages and disadvantages

Cathodic protection continued anode materials

Cathodic protection continued anode potential

Cathodic protection continued anode requirement

Cathodic protection continued applications

Cathodic protection continued cathode potentials

Cathodic protection continued circulating water systems

Cathodic protection continued controlled potential

Cathodic protection continued current density requirements

Cathodic protection continued current measurement

Cathodic protection continued current requirements

Cathodic protection continued current-measuring

Cathodic protection continued design

Cathodic protection continued economics

Cathodic protection continued electrical continuity

Cathodic protection continued electrochemical potential

Cathodic protection continued equipment

Cathodic protection continued impressed-current

Cathodic protection continued interaction

Cathodic protection continued measurements

Cathodic protection continued mechanism

Cathodic protection continued monitoring

Cathodic protection continued pipelines

Cathodic protection continued potential measurement

Cathodic protection continued potential-measuring

Cathodic protection continued reducing

Cathodic protection continued resistance-measuring

Cathodic protection continued resistivity measurements

Cathodic protection continued resistivity-measuring

Cathodic protection continued sacrificial anode

Cathodic protection continued ships

Cathodic protection continued steel

Cathodic protection continued stray-current

Cathodic protection continued structure/electrolyte potentials

Cathodic protection continued structures applicable

Cathodic protection continued structures protected

Cathodic protection continued surface area

Cathodic protection continued surface coating

Cathodic protection continued system

Cathodic protection continued types

Cathodically protective

© 2024 chempedia.info