Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calibration procedures method

The Method 3A concerns the determination of O2 and CO2 using instrument analyzers. A typical O2 analyzer is shown in Figure 7.45. This method discusses test and calibration procedures. Method 3B is specific to... [Pg.162]

The simplest calibration procedure for a gas flow-measuring device is to connect it in series with a reference meter and allow the same flow to pass th tough both instruments. This requires a reference instrument of better metrological quality than the calibrated instrument. One fact to consider when applying this method is that the mass flow rate in the system containing both instruments is constant (assuming no leakage), but the volume flow rate is not. The volume flow rate depends on the fluid density and the density depends on the pressure and the temperature. The correct way to calibrate is to compare either the measured mass... [Pg.1168]

Note. The calibration procedure is, however, of limited accuracy and a more accurate result may be obtained using the method of standard addition (Section 9.4)... [Pg.249]

The extraction of water at room temperature as a procedure for the calibration of the Fischer method requires further verification, because the reagent is not specific for water. It would be desirable to compare this calibration procedure with another. In general, agreement in the results of two or more independent calibration procedures might be used as a criterion of the attainment of accuracy. [Pg.53]

Rows 1-7, item Titr 0.5% subtracted typical of temporary change in the production process, calibration procedure, or analytical method, especially if values 1-7 were obtained in one production campaign or measurement run. [Pg.253]

The validity of a practical method of direct viscosity calculation from size exclusion chromatographic analysis is demonstrated. The method is convenient to use and is not limited by the availability of narrow MWD standards. It is possible to accurately measure polymer Mark-Houwink constants using the suggested broad standard SEC-[n] and SEC-MW calibration procedure. [Pg.106]

A new direct method for using size exclusion chromatography (SEC) to evaluate polymer intrinsic viscosity [n] is discussed. Sample viscosity information is obtained by combining SEC elution curve data and calibration data using direct SEC-[n] calibration procedures without involving polymer molecular weight calculations. The practical utility, convenience and the expected precision of the proposed method are illustrated. [Pg.106]

Standards should be analyzed contemporaneously for both determinative and confirmatory procedures. The method developer needs to describe fully the preparation of all the standards and the calibration procedure to be used, such as calibration prior to sample analysis, interspersed standards, or bracketing standards (confirmatory only). [Pg.84]

The peak position and universal calibration methods rely on peak position calibration with known polymers of narrow molecular weight distribution. Several other calibration procedures requiring only a single broad moleculau weight standard have been proposed [77,439]. These procedures are quite c< plex and have a major drawback in that, unlike the peak position methods, instrumental peak broadening must be accounted for correctly if accurate results are to be obtained. [Pg.743]

After the calibration procedure and the control over the experiment have been improved, a similar experiment with enhanced ground water flow will be done to develop the method further. [Pg.191]

Values for G(unknown) were experimentally determined by using the previously calibrated cells, and these data were used to calculate values for D(unknown) using the cell constants. The overall average value of D(unknown) was 1.11 x 1(T5, which compares well with a reported value of 1.1 X 10 5. The coefficient of variation associated with the diffusion coefficient was 2.7% for one cell and 1.7% for a second cell. This calibration procedure thus provided information about the accuracy and precision of the method as well as the effect of temperature and concentration on the determination of the diffusion coefficient. [Pg.109]

The underlying calibration procedure of a newly developed analytical method has to be examined by basic validation studies to determine the reliability of the method and its efficiency in comparison with traditional methods. In order to ensure long-term stability, it is necessary to perform revalidations, which can be combined with the use of quality control charts, over meaningful time periods. [Pg.167]

It is always wise to calibrate physical methods of analysis using mixtures of known composition under conditions that approximate as closely as practicable those prevailing in the reaction system. This procedure is recommended because side reactions can introduce large errors and because some unforeseen complication may invalidate the results obtained with the technique. For example, in spectrophotometric studies of reaction kinetics, the absorbance that one measures can be grossly distorted by the presence of small amounts of highly colored absorbing impurities or by-products. For this reason, when one uses indirect physical methods in kinetic studies, it is essential to verify the stoichiometry of the reaction to ensure that the products of the reaction and their relative mole numbers are known with certainty. For the same reason it is recommended that more than one physical method of analysis be used in detailed kinetic studies. [Pg.39]

Now, it is necessary to calibrate the calorimeter in order to analyze quantitatively the recorded thermograms and determine the amount of heat evolved by the interaction of a dose of gas with the adsorbent surface. The use of a standard substance or of a standard reaction is certainly the most simple and reliable method, though indirect, for calibrating a calorimeter, since it does not require any modification of the inner cell arrangement. [For a recent review on calibration procedures, see 72).3 No standard adsorbent-adsorbate system has been defined, however, and the direct electrical calibration must therefore be used. It should be remarked, moreover, that the comparison of the experimental heat of a catalytic reaction with the known change of enthalpy associated with the reaction at the same temperature provides, in some favorable cases, a direct control of the electrical calibration (see Section VII.C). [Pg.233]

We have made the DSC the standard method for the radon measurement. The calibration procedures have been described elsewhere (Shimo et al., 1983) Briefly, the Rn-222 emanating from a standard Ra-226 hydrochloric acid solution (37 kBq) contained in a bubbling bottle entered a large stainless steel container (937 ). [Pg.166]

Quantitative analysis demands that an analytical measurement can be accurately and reliably related to the composition of the sample in a strict proportionality (p. 2). The complexity of relationships, especially for instrumental techniques, means that the proportionalities need to be practically established in calibration procedures. For a typical simple calibration, a range of standards is prepared containing varying amounts of the analyte. These are then analysed by the standard method and a calibration curve of signal us amount of analyte is plotted. Results for unknowns are then interpolated from this graph (Figure 2.7). An important convention is... [Pg.16]

A particular issue that must be considered for all calibration procedures is the possibility of matrix effects on the analyte signal. If such effects are present they may be allowed for in many cases by matrix matching of the standard to the sample. This of course requires an accurate knowledge of the sample matrix. Where this is not available, the method of standard addition is often effective. This involves spiking at least three equal aliquots of the sample with different amounts of the analyte, and then measuring the response for both spiked and unspiked aliquots. A plot of response vs analyte, extrapolated back, will give abscissae intercepts from which the amount of analyte in the sample may be deduced (Figure 2.8). [Pg.17]

A variety of measurement methods have been developed for determining the water activity of food materials and are well described in texts such as Rahman (1995), Wiederhold (1997), and Bell and Labuza (2000). In general, water activity is a relatively easy parameter to measure, which can be an advantage, especially for use in the food industry. Depending on the technique selected, the water activity of a food material can be measured in a time frame of minutes (e.g., electronic instrument). In addition, individuals can be trained, with a limited amount of instruction, to make water activity measurements. Consequently, when appropriate, water activity measurements can be made relatively quickly by personnel overseeing a manufacturing line for quality assurance purposes. Measurement protocols, such as calibration procedures and proper temperature control, should be implemented to assure the accuracy of online c/w measurements. [Pg.36]

In the strategy for GC, it is noted that there may be no need for weight or volume data for the sample because the sample itself may be injected directly and quantitation performed solely from the chromatographic information. It is also noted that the internal standard method is common, and the solution preparation and calibration procedure are altered accordingly. [Pg.533]

The selected factors are either mixture-related, quantitative (continuous), or qualitative (discrete).A mixture-related factor is, for instance, the fraction organic solvent in the buffer system. Examples of quantitative factors are the electrolyte concentration, the buffer pH, the capillary temperature, and the voltage, and of qualitative factors the manufacturer or the batch number of a reagent, solvent, or capillary. Sample concentration (see Table 1) is a factor sometimes included. However, the aim of the method tested is to determine this concentration through the measured signal, from a calibration procedure. Thus, one evaluates the influence of the sample concentration on the sample concentration, which we do not consider a good idea. [Pg.189]

In addition to the specificity of the monitoring method, an important requirement for the measurement of atmospheric pollutants is the accuracy of the calibration technique. The calibration procedure for the measurement of oxidants or ozone utilizes a stable and reproducible sample of dilute ozone in air. The ozone concentration of this sample is established with a reference method that is not necessarily suitable for monitoring ambient air. This reference method must agree with the scientifically accurate measurement of ozone in the calibration sample. [Pg.242]

Air Pollution Control I trict—County of Los Angeles. Ozone Calibration Procedure for Monitoring Instruments (Titrimetric Method). Los Angeles Air Pollution Control District—County of Los Angeles, 1975. IS pp. [Pg.276]


See other pages where Calibration procedures method is mentioned: [Pg.488]    [Pg.144]    [Pg.6]    [Pg.122]    [Pg.392]    [Pg.417]    [Pg.202]    [Pg.203]    [Pg.601]    [Pg.633]    [Pg.187]    [Pg.38]    [Pg.390]    [Pg.166]    [Pg.136]    [Pg.236]    [Pg.142]    [Pg.47]    [Pg.93]    [Pg.208]    [Pg.408]    [Pg.411]    [Pg.117]    [Pg.8]    [Pg.295]    [Pg.300]    [Pg.6]    [Pg.441]   
See also in sourсe #XX -- [ Pg.293 ]




SEARCH



Analytical procedures calibration methods

Method calibration

Method procedure

Methodical procedures

© 2024 chempedia.info