Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrices matching

The method of standard additions can be used to check the validity of an external standardization when matrix matching is not feasible. To do this, a normal calibration curve of Sjtand versus Cs is constructed, and the value of k is determined from its slope. A standard additions calibration curve is then constructed using equation 5.6, plotting the data as shown in Figure 5.7(b). The slope of this standard additions calibration curve gives an independent determination of k. If the two values of k are identical, then any difference between the sample s matrix and that of the external standards can be ignored. When the values of k are different, a proportional determinate error is introduced if the normal calibration curve is used. [Pg.115]

In most quantitative analyses we are interested in determining the concentration, not the activity, of the analyte. As noted earlier, however, the electrode s response is a function of the analyte s activity. In the absence of interferents, a calibration curve of potential versus activity is a straight line. A plot of potential versus concentration, however, may be curved at higher concentrations of analyte due to changes in the analyte s activity coefficient. A curved calibration curve may still be used to determine the analyte s concentration if the standard s matrix matches that of the sample. When the exact composition of the sample matrix is unknown, which often is the case, matrix matching becomes impossible. [Pg.487]

Another approach to matrix matching, which does not rely on knowing the exact composition of the sample s matrix, is to add a high concentration of inert electrolyte to all samples and standards. If the concentration of added electrolyte is sufficient, any difference between the sample s matrix and that of the standards becomes trivial, and the activity coefficient remains essentially constant. The solution of inert electrolyte added to the sample and standards is called a total ionic strength adjustment buffer (TISAB). [Pg.487]

Wavelength dispersive x-ray fluorescence spectrometric (xrf) methods using the titanium line at 0.2570 nm may be employed for the determination of significant levels of titanium only by carefiil matrix-matching. However, xrf methods can also be used for semiquantitative determination of titanium in a variety of products, eg, plastics. Xrf is also widely used for the determination of minor components, such as those present in the surface coating, in titanium dioxide pigments. [Pg.134]

Errors due to nonspectral interferences can be reduced via matrix matching, the method of standard additions (and its multivariant extensions), and the use of internal standards. ... [Pg.642]

NAA is a quantitative method. Quantification can be performed by comparison to standards or by computation from basic principles (parametric analysis). A certified reference material specifically for trace impurities in silicon is not currently available. Since neutron and y rays are penetrating radiations (free from absorption problems, such as those found in X-ray fluorescence), matrix matching between the sample and the comparator standard is not critical. Biological trace impurities standards (e.g., the National Institute of Standards and Technology Standard Rference Material, SRM 1572 Citrus Leaves) can be used as reference materials. For the parametric analysis many instrumental fiictors, such as the neutron flux density and the efficiency of the detector, must be well known. The activation equation can be used to determine concentrations ... [Pg.675]

Other effects. In addition to the compound formation and ionisation effects which have been considered, it is also necessary to take account of so-called matrix effects. These are predominantly physical factors which will influence the amount of sample reaching the flame, and are related in particular to factors such as the viscosity, the density, the surface tension and the volatility of the solvent used to prepare the test solution. If we wish to compare a series of solutions, e.g. a series of standards to be compared with a test solution, it is clearly essential that the same solvent be used for each, and the solutions should not differ too widely in their bulk composition. This procedure is commonly termed matrix matching. [Pg.794]

Ensure if possible that standard and sample solutions are of similar bulk composition to eliminate matrix effects (matrix matching). [Pg.794]

Requirements for standards used In macro- and microspectrofluorometry differ, depending on whether they are used for Instrument calibration, standardization, or assessment of method accuracy. Specific examples are given of standards for quantum yield, number of quanta, and decay time, and for calibration of Instrument parameters. Including wavelength, spectral responslvlty (determining correction factors for luminescence spectra), stability, and linearity. Differences In requirements for macro- and micro-standards are considered, and specific materials used for each are compared. Pure compounds and matrix-matched standards are listed for standardization and assessment of method accuracy, and existing Standard Reference Materials are discussed. [Pg.98]

The enormous difference in certified values between methods and between analytes illustrates well how much care is needed in matrix/method matching. Further evidence of the importance of matrix matching is provided by an interlaboratory study on trace elements in soil reported by Maier et al. (1983) and the certification of a sewage sludge described by Maaskant et al. (1998). [Pg.240]

Matrix Match Matrix Related Matrix Relation Inferred Matrix Not Related... [Pg.247]

Only a direct matrix match of sample and CRM, and the CRM s use as a direct calibrant will allow the user to demonstrate accuracy and subsequently traceability close to the uncertainties established during the CRM certification ( note matrixmatching may not be necessary with matrix-independent techniques). This reality places a significant burden on the CRM producers, since large uncertainties in the certified values may degrade the perceived value of the CRM. [Pg.248]

The effect of co-extracted matrix components on the analyte response in the final determination step should be assessed. Normally, this is done by comparing the response of standards in solvent with matrix-matched standards, i.e., standards prepared in the extract of a control sample without residues. Because matrix effects tend to be inconsistent, the guidelines propose the general use of matrix-matched calibration unless it is demonstrated to be unnecessary. [Pg.120]

L. Alder, G. Kempe, and P. Baumann, Need of Matrix Matched Standards-Conclusion from a German Ring Test, Presented at 3rd European Pesticide Residue Workshop, York, UK, July 3-5, 2000. [Pg.132]

It is often difficult to define where sample extraction ends and cleanup procedures begin. Sample extracts may be injected directly into a gas or liquid chromatograph in certain cases, but this will be dependent on the analyte, sample matrix, injection, separation and detection system, and the limit of determination (LOD) which is required. It is also more likely that matrix-matched calibration standards will be needed in order to obtain robust quantitative data if no cleanup steps are employed. [Pg.734]

Other ways to minimize matrix effects include improving the sample cleanup, diluting the sample, using labeled internal standards, using standard addition, or using matrix-matched standards. The last approach, however, is not permitted for enforcement methods at present by the US EPA or the US Pood and Drug Administration... [Pg.780]

Pd removal was determined as follows. An aliquot of a representative liquid or solid sample was accurately weighed and subsequently digested by refluxing in nitric and/or hydrochloric acid using a closed vessel microwave procedure (CEM MARS5 Xpress or Milestone Ethos EZ). Cooled, digested samples were diluted, matrix matched to standards, and referenced to a linear calibration curve for quantitation an internal standard was employed to improve quantitation. All samples were analyzed by an Inductively Coupled Plasma Mass Spectrometer or ICP/MS (Perkin Elmer SCIEX Elan DRCII) operated in the standard mode. [Pg.54]

Analyte dilution sacrifices sensitivity. Matrix matching can only be applied for simple matrices, but is clearly not applicable for complex matrices of varying composition. Accurate correction for matrix effect is possible only if the IS is chosen with a mass number as close as possible to that of the analyte elements). Standard addition of a known amount of the element(s) of interest is a safe method for samples of unknown composition and thus unknown matrix effect. Chemical separations avoid spectral interference and allow preconcentration of the analyte elements. Sampling and sample preparation have recently been reviewed [4]. [Pg.589]

As XRF is not an absolute but a comparative method, sensitivity factors are needed, which differ for each spectrometer geometry. For quantification, matrix-matched standards or matrix-correction calculations are necessary. Quantitative XRF makes ample use of calibration standards (now available with the calibrating power of some 200 international reference materials). Table 8.41 shows the quantitative procedures commonly employed in XRF analysis. Quantitation is more difficult for the determination of a single element in an unknown than in a known matrix, and is most complex for all elements in an unknown matrix. In the latter case, full qualitative analysis is required before any attempt is made to quantitate the matrix elements. [Pg.632]

In addition to statistical peculiarities, special features may also result from certain properties of samples and standards which make it necessary to apply special calibration techniques. In cases when matrix effects appear and matrix-matched calibration standards are not available, the standard addition method (SAM, see Sect. 6.2.6) can be used. [Pg.159]

Brenner et al. [ 169] applied inductively coupled plasma atomic emission spectrometry to the determination of calcium (and sulfate) in brines. The principal advantage of the technique was that it avoided tedious matrix matching of calibration standards when sulfate was determined indirectly by flame techniques. It also avoided time-consuming sample handling when the samples were processed by the gravimetric method. The detection limit was 70 ig/l and a linear dynamic range of 1 g/1 was obtained for sulfate. [Pg.156]

An ideal method for the preconcentration of trace metals from natural waters should have the following characteristics it should simultaneously allow isolation of the analyte from the matrix and yield an appropriate enrichment factor it should be a simple process, requiring the introduction of few reagents in order to minimise contamination, hence producing a low sample blank and a correspondingly lower detection limit and it should produce a final solution that is readily matrix-matched with solutions of the analytical calibration method. [Pg.303]

Matrix-matched Certified Reference Materials or spiked samples should be used to determine the linearity of a method. [Pg.89]

The use of external chemical standards is suitable for many applications. Ideally, chemical standards should be matrix-matched with samples to ensure that they respond to the measurement process in the same way as the samples. In some cases, a sample preparation and measurement process has inherent faults... [Pg.111]

A particular issue that must be considered for all calibration procedures is the possibility of matrix effects on the analyte signal. If such effects are present they may be allowed for in many cases by matrix matching of the standard to the sample. This of course requires an accurate knowledge of the sample matrix. Where this is not available, the method of standard addition is often effective. This involves spiking at least three equal aliquots of the sample with different amounts of the analyte, and then measuring the response for both spiked and unspiked aliquots. A plot of response vs analyte, extrapolated back, will give abscissae intercepts from which the amount of analyte in the sample may be deduced (Figure 2.8). [Pg.17]

Interferences in atomic absorption measurements can arise from spectral, chemical and physical sources. Spectral interference resulting from the overlap of absorption lines is rare because of the simplicity of the absorption spectrum and the sharpness of the lines. However, broad band absorption by molecular species can lead to significant background interference. Correction for this may be made by matrix matching of samples and standards, or by use of a standard addition method (p. 30 et seq.). [Pg.331]


See other pages where Matrices matching is mentioned: [Pg.110]    [Pg.110]    [Pg.130]    [Pg.455]    [Pg.775]    [Pg.810]    [Pg.811]    [Pg.171]    [Pg.112]    [Pg.222]    [Pg.239]    [Pg.247]    [Pg.106]    [Pg.111]    [Pg.435]    [Pg.48]    [Pg.49]    [Pg.54]    [Pg.589]    [Pg.621]    [Pg.657]    [Pg.75]   
See also in sourсe #XX -- [ Pg.110 ]

See also in sourсe #XX -- [ Pg.198 , Pg.207 ]

See also in sourсe #XX -- [ Pg.32 , Pg.74 ]

See also in sourсe #XX -- [ Pg.209 , Pg.210 ]

See also in sourсe #XX -- [ Pg.16 , Pg.25 , Pg.30 , Pg.31 , Pg.246 , Pg.301 , Pg.374 , Pg.425 ]

See also in sourсe #XX -- [ Pg.141 , Pg.142 , Pg.146 , Pg.163 , Pg.242 ]

See also in sourсe #XX -- [ Pg.124 ]

See also in sourсe #XX -- [ Pg.74 , Pg.211 ]

See also in sourсe #XX -- [ Pg.15 ]

See also in sourсe #XX -- [ Pg.275 ]




SEARCH



Atom-match matrix

Calibration matrix matching

Certified Reference Materials matrix matched

Matched curvature covariance matrix

Matrix matched

Matrix matched CRMs

Matrix matched calibration solutions

Matrix matched calibrators

Matrix matching method

Matrix, generally matching

Matrix-matched calibration standards

Matrix-matched standards

Maximum-match matrix

Quantitative Analysis Using Matrix Matching Method

Quantitative analysis matrix matching method

© 2024 chempedia.info