Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calibration analytical standards

Analytical chemists make a distinction between calibration and standardization. Calibration ensures that the equipment or instrument used to measure the signal is operating correctly by using a standard known to produce an exact signal. Balances, for example, are calibrated using a standard weight whose mass can be traced to the internationally accepted platinum-iridium prototype kilogram. [Pg.47]

The trade-offs between direct calibration and standard addition are treated in Ref 103. The same recovery as is found for the native analyte has to be obtained for the spiked analyte (see Section 3.2). The application of spiking to potentiometry is reviewed in Refs. 104 and 105. A worked example for the application of standard addition methodology to FIA/AAS is found in Ref 106. Reference 70 discusses the optimization of the standard addition method. [Pg.122]

From now on, we adopt a notation that reflects the chemical nature of the data, rather than the statistical nature. Let us assume one attempts to analyze a solution containing p components using UV-VIS transmission spectroscopy. There are n calibration samples ( standards ), hence n spectra. The spectra are recorded at q wavelengths ( sensors ), digitized and collected in an nx.q matrix S. The information on the known concentrations of the chemical constituents in the calibration set is stored in an nxp matrix C. Each column of C contains the concentrations of one of the p analytes, each row the concentrations of the analytes for a particular calibration standard. [Pg.353]

In summary, official German analytical methods for pesticide residues are always validated in several laboratories. These inter-laboratory studies avoid the acceptance of methods which cannot readily be reproduced in further laboratories and they do improve the ruggedness of analytical procedures applied. The recently introduced calibration with standards in matrix improves the trueness of the reported recovery data. Other aspects of validation (sample processing, analyte stability, extraction efficiency) are not considered. [Pg.128]

Analytical standards are prepared for two purposes for fortifying control matrices to determine the analytical accuracy and for calibrating the response of the analyte in the electrochemical detector. [Pg.354]

Weigh 0.1000 g of analytical standard NIPA into a 100-mL volumetric flask, dilute the standard to volume with isooctane-ethyl acetate (9 1, v/v), and mix the solution well. This solution contains 1000 qg mL of the analyte. Dilute the solution as appropriate to prepare calibration standards at the following concentrations 0.01, 0.025,0.05,0.10, 0.25,0.50,0.75, and 1.00 qgmL Store all standards refrigerated (0-6°C) in amber-glass bottles. [Pg.363]

Analytical standards are prepared for two purposes for fortifying control matrices to determine the analytical accuracy and for calibrating the response of the analyte in the mass spectrometer detector. The purity of all standards must be verified before preparation of the stock solutions. All standards should be refrigerated (2-10 °C) in clean amber-glass bottles with foil/Tefion-lined screw-caps. The absolute volume of the standard solutions may be varied at the discretion of the analyst, as long as the correct proportions of the solute and solvent are maintained. Calibrate the analytical balance before weighing any analytical standard material for this method. [Pg.371]

Dilute each of the detector calibration standards to a final volume of 100 mL with isooctane-ethyl acetate (9 1, v/v). The final concenfration of each deuferafed com-ponenf is 100 igL in all analytical standards. [Pg.373]

Linear regression coefficients should be calculated for the ratio of analyte to internal standard area or height plotted versus the ratio of analyte to internal standard concentration in the calibration standards. The data from the analytical standards should then be fitted to the linear model... [Pg.517]

Stock solutions of approximately 1 mg mL were prepared by dissolving the appropriate amounts of the analytical standards in acetonitrile. Working standard solutions for fortification were prepared in volumetric flasks by appropriate dilutions of the stock solutions for each analyte or combination of analytes. During analysis, SCA is converted to DMS and HMS is derivatized therefore, the analytical standard solutions for quantitation and instrument calibration contained sulfentrazone, DMS and derivatized HMS. A measured volume of a standard solution containing sulfentrazone, DMS and HMS (prepared from stock solutions) was derivatized simultaneously with the samples. [Pg.573]

Principles and Characteristics There are basically two ways of obtaining accurate results in micro and trace analyses, namely either use of standard reference materials (if available) for calibrating analytical methods, or else use of highly accurate methods. Table 8.69... [Pg.659]

Partial) dialysis in flow analysis. The sample solution flows along one side of the membrane, while the analyser solution passing (often in counter-current) on the other side takes up the diffused components from the sample. A dynamic equilibrium is reached (under steady-state conditions) in the leaving analyser solution, which is then analysed and from the result of which the analyte content can be derived via calibration with standard solutions treated in exactly the same way. This is a common procedure, e.g., in Technicon AutoAnalyzers, and has also been applied in haemoanalysis by Ammann et al.154 as described above. [Pg.370]

In order to measure the exact amount of a specific protein (analyte) by IHC signal intensity, a critical requirement is the availability of a standard reference material (present in a known amount by weight) that can be used to calibrate the assay (IHC stain). It is then possible to determine the amount of test analyte (protein) by a translation process from the intensity of IHC signals. In this respect it is helpful to consider the IHC stain as a tissue based ELISA assay (Enzyme Linked ImmunoSorbent Assay), noting that ELISA is used in the clinical laboratory as a standard quantitative method for measuring protein by weight in fluids, by reference to a calibrating reference standard. [Pg.80]

Calibration Most process analyzers are designed to monitor concentration and/or composition. This requires a calibration of the analyzer with a set of prepared standards or from well-characterized reference materials. The simple approach must always be adopted first. For relatively simple systems the standard approach is to use a simple linear relationship between the instrument response and the analyte/ standard concentration [27]. In more complex chemical systems, it is necessary to adopt either a matrix approach to the calibration (still relying on the linearity of the Beer-Lambert law) using simple regression techniques, or to model the concentration and/or composition with one or more multivariate methods, an approach known as chemometrics [28-30]. [Pg.184]

The basic calibration of a method only covers the final measurement step without any preceding sample preparation. Pure analytical standard solutions are used here. Of course this does not cover the whole analytical process. So method characteristics for the basic calibration are not transferable to the whole analytical process. During validation the influence of other matrix constituents has to be investigated. [Pg.187]

SOPs can be both general and specific. Examples of general laboratory operations include how to characterize an analytical standard, how to record observations and data, and how to label reagents and solutions. Most laboratory operations even have an SOP for writing and updating SOPs. Examples of specific laboratory operations include the preparation and analysis of a specific company s product or raw material, the operation and calibration of specific instruments, and the preparation of specific samples for analysis. Often, SOPs are based on published methods, such as those found in scientific journals, in application notes, and procedures published by instrument manufacturers, or in books of standard methods, such as those published by the American Society for Testing and Materials (ASTM) and the Association of Official Analytical Chemists (AOAC). The published... [Pg.29]

Gas (GC) and Liquid (HPLC) Chromatographs These are similar to spectrophotometers in that they are calibrated via a detector response to some property of analyte. The analyte may either be in solution or, in the case of GC (Figure 5.9), in pure form. Again, a calibration (or "standard") curve of detector response vs. either concentration or amount of pure chemical used is plotted and unknowns determined by correlation with the known stan-... [Pg.34]

Filter if necessary and take a precise aliquot of the sample extract and dilute this until its concentration falls at approximately the mid-point of the calibration series prepared using the analytical standard. [Pg.253]

Spectroscopic techniques require calibration with standards of known analyte concentration. Atomic spectrometry is sufficiently specific for a simple solution of a salt of the analyte in dilute acid to be used, although it is a wise precaution to buffer the standards with any salt which occurs in large concentration in the sample solution, e.g. 500 pg ml-i or above. Calibration curves can be obtained by plotting absorbance (for AAS), emission signal (for AES), fluorescence signal (for AFS) or ion count rate (for MS) as the dependent variable against concentration as the independent variable. Often the calibration curve will bend towards the concentration axis at higher concentrations, as shown in Fig. [Pg.6]

A single measurement of a calibration sample can give the concentration of the test solution by a simple ratio. This is often done in techniques where a calibration internal standard can be measured simultaneously (within one spectrum or chromatogram) with the analyte and the system is sufficiently well behaved for the proportionality to be maintained. Examples are in quantitative nuclear magnetic resonance with an internal proton standard added to the test solution, or in isotope dilution mass spectrometry where an isotope standard gives the reference signal. For instrument responses As and /sample for internal standard and sample, respectively, and if the concentration of the internal standard is Cjs, then... [Pg.63]

An initial calibration verification standard should be measured after calibration and before measuring any sample. A calibration verification standard is a standard solution or set of solutions used to check calibration standard levels. The concentration of the analyte should be near either the regulatory level of concern or approximately at the midpoint of the calibration range. These standards must be independent of the calibration solutions and be prepared from a stock solution with a different manufacturer or manufacturer lot identification than the calibration standards. An acceptance criterion is set, usually as a maximum allowable percentage variation (e.g., 5%, 10%). The calibration can be continually verified using either a calibration standard or the initial calibration verification standard. Acceptance criteria must be set and action taken when results fall outside the limits (i.e., stop the analysis, investigate, correct the problem and rerun samples run between the verification standards that were not limits). [Pg.133]

True profile analysis requires scanning over the whole mass range for the acquisition of all data on excreted compounds. Quantitation has been more challenging on a quadrupole instrument because total ion current peaks are seldom a single component and extracted-ion chromatograms (EICs) when recovered from scanned data are of poor quality due to the lower sensitivity of scanning GC-MS. Thus, we developed profile analysis based on SIM of selected analytes but tried to ensure the components of every steroid class of interest were included. For ion traps the fundamental form of data collection (in non-MS/MS mode must be full -scans). Thus, the quantitative data produced are EICs obtained from scanned data. The EICs are of the same ions used for SIM in quadrupole instruments and the calibration external standards are the same. [Pg.569]

Another calibration technique - standard addition - minimizes matrix effects because analytes with well defined increasing concentrations are added to a set of sample solutions to be analyzed. The measured calibration curve in the standard addition mode plots the measured ion intensities of analytes versus the concentration added to the sample solution. The concentration of analytes in the undoped sample is then determined by extrapolation of the calibration curve with the x-axis. Matrix matching is subsequently performed and the matrix effects (signal depression or interference problems) are considered. An example of the standard addition technique is described in Section 6.2.6 using solution based calibration in LA-ICP-MS. [Pg.194]

The advantage of IDMS in comparison to other quantification strategies (external calibration or standard addition) is that analyte recovery does not have to be quantitative, providing that isotopic equilibrium has been achieved between all of the analyte and the added spike material. High accuracy analysis by IDMS is now well established.53 In the following paragraphs selected examples of IDMS use will be discussed briefly. [Pg.197]

Although Euclidean and Mahalanobis distances are the ones most commonly used in analytical chemistry applications, there are other distance measures that might be more appropriate for specific applications. For example, there are standardized Euclidean distances, where each of the dimensions is inversely weighted by the standard deviation of that dimension in the calibration data (standard deviation-standardized), or the range of that dimension in the calibration data (range-standardized). [Pg.288]

Routine GC analysis for environmental samples involve running one of the calibration check standards before sample analysis to determine if the area or height response is constant (i.e., within 15% standard deviation of the response factor or calibration factor, and to check if there is a shift in the retention times of the analytes peaks. The latter can occur to a significant degree due to any variation in conditions, such as temperature or the flow rate of the carrier gas. Therefore, an internal standard should be used if possible in order to determine the retention time shift or to compensate for any change in the peak response. If an analyte is detected in the sample, its presence must be ascertained and then confirmed as follows ... [Pg.40]

Analytical standards, including certification or provision of solution calibration standards... [Pg.289]


See other pages where Calibration analytical standards is mentioned: [Pg.47]    [Pg.714]    [Pg.812]    [Pg.815]    [Pg.74]    [Pg.136]    [Pg.294]    [Pg.420]    [Pg.265]    [Pg.9]    [Pg.200]    [Pg.194]    [Pg.195]    [Pg.204]    [Pg.204]    [Pg.87]    [Pg.26]    [Pg.270]    [Pg.7]    [Pg.154]   


SEARCH



Analyte standard

Analytical Calibration

Analytical Standardization and Calibration

Analytical standards

Quantification of Analytical Data via Calibration Curves in Mass Spectrometry Using Certified Reference Materials or Defined Standard Solutions

Standardization calibration standards

© 2024 chempedia.info