Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry water

Trace metals in sea water are preconcentrated either by coprecipitating with Ee(OH)3 and recovering by dissolving the precipitate or by ion exchange. The concentrations of several trace metals are determined by standard additions using graphite furnace atomic absorption spectrometry. [Pg.449]

Methods. As discussed in the previous chapter, a number of approaches have been used to assess the presence of potentially toxic trace elements in water. The approaches used in this assessment include comparative media evaluation, a human health and aquatic life guidelines assessment, a mass balance evaluation, probability plots, and toxicity bioassays. Concentrations of trace elements were determined by atomic absorption spectrometry according to standard methods (21,22) by the Oregon State Department of Environmental Quality and the U.S. Geological Survey. [Pg.276]

Micro-pipetting instruments such as the "Eppendorf or "Oxford pipettors with disposable plastic cone tips are customarily employed to dispense the liquid samples into electrothermal atomizers. Sampling problems which are associated with the use of these pipettors are among the troublesome aspects of electrothermal atomic absorption spectrometry (67,75). The plastic cone-tips are frequently contaminated with metals, and they should invariably be cleaned before use by soaking in dilute "ultra pure nitric acid, followed by multiple rinses with demineralized water which has been distilled in a quartz still. [Pg.254]

Acar 0, Kn ic Z, Turker AR (1999) Determination of bismuth, indium and lead in geological and sea-water samples by electrothermal atomic absorption spectrometry with nickel containing chemical modifiers. Anal Chim Acta 382 329-338. [Pg.277]

Chakraborti D, DeJonghe WRA, Mol WE, et al. 1984. Determination of ionic alkyllead compounds in water by gas chromatography/atomic absorption spectrometry. Anal Chem 56 2692-2697. [Pg.500]

Eaton AD, Clesceri LS, Greenberg AE. 1995b. Method 3111, Metals by Flame Atomic Absorption Spectrometry, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC. [Pg.511]

Xu Y, Liang Y. 1997. Combined nickel and phosphate modifier for lead determination in water by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 12(4) 471-474. [Pg.588]

Pellenberg and Church [58] have discussed the storage and processing of estuarine water samples for analysis by atomic absorption spectrometry. [Pg.45]

Moffett [179] determined chromium in seawater by Zeeman corrected graphite tube atomisation atomic absorption spectrometry. The chromium is first complexed with a pentan-2,4 dione solution of ammonium 1 pyrrolidine carbodithioc acid, then this complex extracted from the water with a ketonic solvent such as methyl isobutyl ketone, 4-methylpentan-2-one or diisobutyl ketone. [Pg.157]

The collection behaviour of chromium species was examined as follows. Seawater (400 ml) spiked with 10-8 M Crm, CrVI, and Crm organic complexes labelled with 51Cr was adjusted to the desired pH by hydrochloric acid or sodium hydroxide. An appropriate amount of hydrated iron (III) or bismuth oxide was added the oxide precipitates were prepared separately and washed thoroughly with distilled water before use [200]. After about 24 h, the samples were filtered on 0.4 pm nucleopore filters. The separated precipitates were dissolved with hydrochloric acid, and the solutions thus obtained were used for /-activity measurements. In the examination of solvent extraction, chromium was measured by using 51Cr, while iron and bismuth were measured by electrothermal atomic absorption spectrometry. The decomposition of organic complexes and other procedures were also examined by electrothermal atomic absorption spectrometry. [Pg.163]

Benzwi [409] determined lithium in Dead Sea water using atomic absorption spectrometry. The sample was passed through a 0.45 pm filter and lithium was then determined by the method of standard additions. Solutions of lithium in hexanol and 2-ethylhexanol gave greatly enhanced sensitivity. [Pg.191]

Graphite-furnace atomic absorption spectrometry, although element-selective and highly sensitive, is currently unable to directly determine manganese at the lower end of their reported concentration ranges in open ocean waters. Techniques that have been successfully employed in recent environmental investigations have thus used a preliminary step to concentrate the analyte and separate it from the salt matrix prior to determination by atomic absorption spectrometry. [Pg.194]

Trace amounts of molybdenum were concentrated from acidified seawater on a strongly basic anion exchange resin (Bio-Rad AG1 X-8 in the chloride form) by treating the water with sodium azide. Molybdenum (VI) complexes with azide were stripped from the resin by elution with ammonium chlo-ride/ammonium hydroxide solution (2 M/2 M). Relative standard deviations of better than 8% at levels of 10 xg per litre were attained for seawater using graphite furnace atomic absorption spectrometry. [Pg.205]

Monien et al. [515] have compared results obtained in the determination of molybdenum in seawater by three methods based on inverse voltammetry, atomic absorption spectrometry, and X-ray fluorescence spectroscopy. Only the inverse voltammetric method can be applied without prior concentration of molybdenum in the sample, and a sample volume of only 10 ml is adequate. Results of determinations by all three methods on water samples from the Baltic Sea are reported, indicating their relative advantages with respect to reliability. [Pg.206]

The average concentration and standard deviation of the Pacific Ocean waters ( xg/l) were 2.00 0.09 by neutron activation analysis, and 1.86 0.12 by atomic absorption spectrometry. For the Adriatic water the corresponding values were about 1.7 xg/l. The difference between the values for the same seawater is within the range to be expected from the standard deviations observed. [Pg.232]

Cabezon et al. [662] simultaneously separated copper, cadmium, and cobalt from seawater by coflotation with octadecylamine and ferric hydroxide as collectors prior to analysis of these elements by flame atomic absorption spectrometry. The substrates were dissolved in an acidified mixture of ethanol, water, and methyl isobutyl ketone to increase the sensitivity of the determination of these elements by flame atomic absorption spectrophotometry. The results were compared with those of the usual ammonium pyrrolidine dithiocarbamate/methyl isobutyl ketone extraction method. While the mean recoveries were lower, they were nevertheless considered satisfactory. [Pg.238]

Campbell and Ottaway [672] have described a simple and rapid method for the determination of cadmium and zinc in seawater, using atomic absorption spectrometry with carbon furnace atomisation. Samples, diluted 1 + 1 with deionised water, are injected into the carbon furnace and atomised in an HGA-72 furnace atomiser under gas-stop conditions. A low atomisation temperature... [Pg.240]

Brugmann et al. [680] compared three methods for the determination of copper, cadmium, lead, nickel, and zinc in North Sea and northeast Atlantic waters. Two methods consisted of atomic absorption spectroscopy but with preconcentration using either freon or methyl isobutyl ketone, and anodic stripping voltammetry was used for cadmium, copper, and lead only. Inexplicable discrepancies were found in almost all cases. The exceptions were the cadmium results by the two atomic absorption spectrometric methods, and the lead results from the freon with atomic absorption spectrometry and anodic scanning voltammetric methods. [Pg.243]

Amankwah and Fasching [4] have discussed the determination of arsenic (V) and arsenic (III) in estuary water by solvent extraction and atomic absorption spectrometry using the hydride generation technique. [Pg.330]

Epstein and Zander [5] determined barium directly in estuarine and sea water by graphite furnace atomic absorption spectrometry. [Pg.330]

Gardner [6] has reported a detailed statistical study involving ten laboratories of the determination of cadmium in coastal and estuarine waters by atomic absorption spectrometry. The maximum tolerable error was defined as 0.1 ptg/1 or 20% of sample concentration, whichever is the larger. Many laboratories participating in this work did not achieve the required accuracy for the determination of cadmium in coastal and estuarine water. Failure to meet targets is attributable to both random and systematic errors. [Pg.331]

Willie et al. [17] used the hydride generation graphite furnace atomic absorption spectrometry technique to determine selenium in saline estuary waters and sea waters. A Pyrex cell was used to generate selenium hydride which was carried to a quartz tube and then a preheated furnace operated at 400 °C. Pyrolytic graphite tubes were used. Selenium could be determined down to 20 ng/1. No interference was found due to, iron copper, nickel, or arsenic. [Pg.334]

Gardner and Yates [26] developed a method for the determination of total dissolved cadmium and lead in estuarine waters. Factors leading to the choice of a method employing extraction by chelating resin, and analysis by carbon furnace atomic absorption spectrometry, are described. To ensure complete extraction of trace metals, inert complexes with humic-like material are decomposed by ozone [27]. The effect of pH on extraction by and elution from chelating resin is discussed, and details of the method were presented. These workers found that at pH 7 only 1-2 minutes treatment with ozone was needed to completely destroy complexing agents such as EDTA and humic acid in the samples. [Pg.337]

Batley [28] examined the techniques available for the in situ electrodeposition of lead and cadmium in estuary water. These included anodic stripping voltammetry at a glass carbon thin film electrode and the hanging drop mercury electrode in the presence of oxygen and in situ electrodeposition on mercury coated graphite tubes. Batley [28] found that in situ deposition of lead and cadmium on a mercury coated tube was the more versatile technique. The mercury film, deposited in the laboratory, is stable on the dried tubes which are used later for field electrodeposition. The deposited metals were then determined by electrothermal atomic absorption spectrometry, Hasle and Abdullah [29] used differential pulse anodic stripping voltammetry in speciation studies on dissolved copper, lead, and cadmium in coastal sea water. [Pg.338]

Le Bihan and Courtot-Coupez [186] analysed fresh water for cationic detergents by a method based on atomic absorption spectrometry of the copper-detergent complex. [Pg.400]

Gagnon [203] has described a rapid and sensitive AAS method developed from the work of Crisp et al. [200] for the determination of anionic detergents at the ppb level in natural waters. The method is based on determination by atomic absorption spectrometry using the bis(ethylene-diamine) copper (II) ion. The method is suitable for detergent concentrations up to 50 ig/l but it can be extended up to 15 mg/1. The limit of detection is 0.31 ig/1. [Pg.402]

Atomic absorption spectrometry is one of the most widely used techniques for the determination of metals at trace levels in solution. Its popularity as compared with that of flame emission is due to its relative freedom from interferences by inter-element effects and its relative insensitivity to variations in flame temperature. Only for the routine determination of alkali and alkaline earth metals, is flame photometry usually preferred. Over sixty elements can be determined in almost any matrix by atomic absorption. Examples include heavy metals in body fluids, polluted waters, foodstuffs, soft drinks and beer, the analysis of metallurgical and geochemical samples and the determination of many metals in soils, crude oils, petroleum products and plastics. Detection limits generally lie in the range 100-0.1 ppb (Table 8.4) but these can be improved by chemical pre-concentration procedures involving solvent extraction or ion exchange. [Pg.333]


See other pages where Atomic absorption spectrometry water is mentioned: [Pg.428]    [Pg.428]    [Pg.160]    [Pg.405]    [Pg.362]    [Pg.252]    [Pg.362]    [Pg.30]    [Pg.107]    [Pg.142]    [Pg.142]    [Pg.146]    [Pg.200]    [Pg.224]    [Pg.242]    [Pg.245]    [Pg.279]    [Pg.332]    [Pg.334]    [Pg.402]    [Pg.593]    [Pg.8]    [Pg.537]    [Pg.36]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Absorption spectrometry

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Water absorption

Water absorptiveness

Water atomic

© 2024 chempedia.info