Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic absorption spectrometry interferences

See also Atomic Absorption Spectrometry Interferences and Background Correction Flame Electrothermal Vapor Generation. Atomic Spectrometry Overview. Flow Injection Analysis Principles. [Pg.166]

ATOMIC ABSORPTION SPECTROMETRY/Interferences and Background Correction 157... [Pg.167]

ATOMIC ABSORPTION SPECTROMETRY/ Interferences and Background Correction 161... [Pg.171]

See ATOMIC ABSORPTION SPECTROMETRY Interferences and Background Correction. ATOMIC EMISSION SPECTROMETRY Interferences and Background Correction... [Pg.269]

See also Atomic Absorption Spectrometry Interferences and Background Correction. Atomic Emission Spectrometry Principles and Instrumentation Interferences and Background Correction Flame Photometry Inductively Coupled Plasma Microwave-Induced Plasma. Atomic Mass Spectrometry Inductively Coupled Plasma Laser Microprobe. Countercurrent Chromatography Solvent Extraction with a Helical Column. Derivatization of Analytes. Elemental Speciation Overview Practicalities and Instrumentation. Extraction Solvent Extraction Principles Solvent Extraction Multistage Countercurrent Distribution Microwave-Assisted Solvent Extraction Pressurized Fluid Extraction Solid-Phase Extraction Solid-Phase Microextraction. Gas Chromatography Ovenriew. Isotope Dilution Analysis. Liquid Chromatography Ovenriew. [Pg.4847]

I have carried out widespread studies on the application of a sensitive and selective preconcentration method for the determination of trace a mounts of nickel by atomic absorption spectrometry. The method is based on soi ption of Cu(II) ions on natural Analcime Zeolit column modified with a new Schiff base 5-((4-hexaoxyphenylazo)-N-(n-hexyl-aminophenyl)) Salicylaldimine and then eluted with O.IM EDTA and determination by EAAS. Various parameters such as the effect of pH, flow rate, type and minimum amount of stripping and the effects of various cationic interferences on the recovery of ions were studied in the present work. [Pg.51]

Spectral overlap of emission and absorption wavelengths Is a potential cause of Interference In atomic absorption spectrometry (57) Thus, (a) the emission line of Fe at 352.424 nm Is close to the resonance line of N1 at 352.454, (b) the emission line of Sb at 217.023 nm Is close to the resonance line of Pb at 216.999 nm, and (c) the emission line of As at 228.812 nm Is close to the resonance line of Cd at 228.802 (57). To date, these practically coincident spectral lines have not been reported to be of practical Importance as sources of analytical Interference In atomic absorption analyses of biological materials. [Pg.258]

Note that the interfacing of LC techniques with MS puts significant constraints on the solvents that can be used i.e., they must be volatile, with a low salt concentration, for MS compatibility. Narrow-bore columns, which use much smaller amounts of salt and organic modifier, appear to have potential for facilitating IEC-MS applications.40 Despite the excellent sensitivity of MS detection for most elements, however, there are cases where matrix effects can interfere. In this situation, combination of IEC with atomic emission spectrometry (AES) or atomic absorption spectrometry (AAS) may be preferable, and can also provide better precision.21 32 4142 Other types of... [Pg.288]

In the determination of cadmium in seawater, for both operational reasons and ease of interpretation of the results it is necessary to separate particulate material from the sample immediately after collection. The dissolved trace metal remaining will usually exist in a variety of states of complexation and possibly also of oxidation. These may respond differently in the method, except where direct analysis is possible with a technique using high-energy excitation, such that there is no discrimination between different states of the metal. The only technique of this type with sufficiently low detection limits is carbon furnace atomic absorption spectrometry, which is subject to interference effects from the large and varying content of dissolved salts. [Pg.146]

Atomic absorption spectrometry has been used to determine caesium in seawater. The method uses preliminary chromatographic separation on a strong cation exchange resin, ammonium hexcyanocobalt ferrate, followed by electrothermal atomic absorption spectrometry. The procedure is convenient, versatile, and reliable, although decomposition products from the exchanger, namely iron and cobalt, can cause interference. [Pg.152]

Neve et al. [547] digested the sample with nitric acid. After digestion the sample is reacted selectively with an aromatic o-diamine, and the reaction product is detected by flameless atomic absorption spectrometry after the addition of nickel (III) ions. The detection limit is 20mg/l, and both selenium (IV) and total selenium can be determined. There was no significant interference in a saline environment with three times the salinity of seawater. [Pg.219]

Fang et al. [661] have described a flow injection system with online ion exchange preconcentration on dual columns for the determination of trace amounts of heavy metal at pg/1 and sub-pg/1 levels by flame atomic absorption spectrometry (Fig. 5.17). The degree of preconcentration ranges from a factor of 50 to 105 for different elements, at a sampling frequency of 60 samples per hour. The detection limits for copper, zinc, lead, and cadmium are 0.07, 0.03, 0.5, and 0.05 pg/1, respectively. Relative standard deviations are 1.2-3.2% at pg/1 levels. The behaviour of the various chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of seawater. [Pg.238]

Tominaga et al. [682,683] studied the effect of ascorbic acid on the response of these metals in seawater obtained by graphite-furnace atomic absorption spectrometry from standpoint of variation of peak times and the sensitivity. Matrix interferences from seawater in the determination of lead, magnesium, vanadium, and molybdenum were suppressed by addition of 10% (w/v) ascorbic acid solution to the sample in the furnace. Matrix effects on the determination of cobalt and copper could not be removed in this way. These workers propose a direct method for the determination of lead, manganese, vanadium, and molybdenum in seawater. [Pg.246]

Willie et al. [17] used the hydride generation graphite furnace atomic absorption spectrometry technique to determine selenium in saline estuary waters and sea waters. A Pyrex cell was used to generate selenium hydride which was carried to a quartz tube and then a preheated furnace operated at 400 °C. Pyrolytic graphite tubes were used. Selenium could be determined down to 20 ng/1. No interference was found due to, iron copper, nickel, or arsenic. [Pg.334]

Flame emission spectrometry is used extensively for the determination of trace metals in solution and in particular the alkali and alkaline earth metals. The most notable applications are the determinations of Na, K, Ca and Mg in body fluids and other biological samples for clinical diagnosis. Simple filter instruments generally provide adequate resolution for this type of analysis. The same elements, together with B, Fe, Cu and Mn, are important constituents of soils and fertilizers and the technique is therefore also useful for the analysis of agricultural materials. Although many other trace metals can be determined in a variety of matrices, there has been a preference for the use of atomic absorption spectrometry because variations in flame temperature are much less critical and spectral interference is negligible. Detection limits for flame emission techniques are comparable to those for atomic absorption, i.e. from < 0.01 to 10 ppm (Table 8.6). Flame emission spectrometry complements atomic absorption spectrometry because it operates most effectively for elements which are easily ionized, whilst atomic absorption methods demand a minimum of ionization (Table 8.7). [Pg.319]

Atomic absorption spectrometry is one of the most widely used techniques for the determination of metals at trace levels in solution. Its popularity as compared with that of flame emission is due to its relative freedom from interferences by inter-element effects and its relative insensitivity to variations in flame temperature. Only for the routine determination of alkali and alkaline earth metals, is flame photometry usually preferred. Over sixty elements can be determined in almost any matrix by atomic absorption. Examples include heavy metals in body fluids, polluted waters, foodstuffs, soft drinks and beer, the analysis of metallurgical and geochemical samples and the determination of many metals in soils, crude oils, petroleum products and plastics. Detection limits generally lie in the range 100-0.1 ppb (Table 8.4) but these can be improved by chemical pre-concentration procedures involving solvent extraction or ion exchange. [Pg.333]

A convenient method is the spectrometric determination of Li in aqueous solution by atomic absorption spectrometry (AAS), using an acetylene flame—the most common technique for this analyte. The instrument has an emission lamp containing Li, and one of the spectral lines of the emission spectrum is chosen, according to the concentration of the sample, as shown in Table 2. The solution is fed by a nebuhzer into the flame and the absorption caused by the Li atoms in the sample is recorded and converted to a concentration aided by a calibration standard. Possible interference can be expected from alkali metal atoms, for example, airborne trace impurities, that ionize in the flame. These effects are canceled by adding 2000 mg of K per hter of sample matrix. The method covers a wide range of concentrations, from trace analysis at about 20 xg L to brines at about 32 g L as summarized in Table 2. Organic samples have to be mineralized and the inorganic residue dissolved in water. The AAS method for determination of Li in biomedical applications has been reviewed . [Pg.324]

Flame atomic absorption spectrometry can be used to determine trace levels of analyte in a wide range of sample types, with the proviso that the sample is first brought into solution. The methods described in Section 1.6 are all applicable to FAAS. Chemical interferences and ionization suppression cause the greatest problems, and steps must be taken to reduce these (e.g. the analysis of sea-water, refractory geological samples or metals). The analysis of oils and organic solvents is relatively easy since these samples actually provide fuel for the flame however, build-up of carbon in the burner slot must be avoided. Most biological samples can be analysed with ease provided that an appropriate digestion method is used which avoids analyte losses. [Pg.51]

M. Felipe-Sotelo, J. M. Andrade, A. Carlosena and D. Prada, Partial least squares multivariate regression as an alternative to handle interferences of Fe on the determination of trace Cr in water by electrothermal atomic absorption spectrometry, Anal. Chem., 75, 2003, 5254 5261. [Pg.237]

D. C. Baxter and J. Ohman, Multi-component standard additions and partial least squares modelling, a multivariate calibration approach to the resolution of spectral interferences in graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 45(4 5), 1990, 481 491. [Pg.240]


See other pages where Atomic absorption spectrometry interferences is mentioned: [Pg.154]    [Pg.154]    [Pg.248]    [Pg.256]    [Pg.257]    [Pg.258]    [Pg.258]    [Pg.258]    [Pg.263]    [Pg.611]    [Pg.107]    [Pg.142]    [Pg.164]    [Pg.171]    [Pg.194]    [Pg.242]    [Pg.457]    [Pg.8]    [Pg.294]    [Pg.362]    [Pg.365]    [Pg.388]    [Pg.95]    [Pg.182]    [Pg.232]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 ]




SEARCH



Absorption spectrometry

Absorption, interferences

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Atomic absorption spectrometry chemical interference

Atomic absorption spectrometry spectral interferences

Atomic interferences

Electrothermal atomic absorption spectrometry interferences

Flame atomic absorption spectrometry interferences

Hydride generation atomic absorption spectrometry interferences

© 2024 chempedia.info