Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride generation atomic absorption spectrometry interferences

Willie et al. [17] used the hydride generation graphite furnace atomic absorption spectrometry technique to determine selenium in saline estuary waters and sea waters. A Pyrex cell was used to generate selenium hydride which was carried to a quartz tube and then a preheated furnace operated at 400 °C. Pyrolytic graphite tubes were used. Selenium could be determined down to 20 ng/1. No interference was found due to, iron copper, nickel, or arsenic. [Pg.334]

Haring et al. [31] determined arsenic and antimony by a combination of hydride generation and atomic absorption spectrometry. These workers found that, compared to the spectrophotometric technique, the atomic absorption spectrophotometric technique with a heated quartz cell suffered from interferences by other hydride-forming elements. [Pg.31]

The recommended procedure for the determination of arsenic and antimony involves the addition of 1 g of potassium iodide and 1 g of ascorbic acid to a sample of 20 ml of concentrated hydrochloric acid. This solution should be kept at room temperature for at least five hours before initiation of the programmed MH 5-1 hydride generation system, i.e., before addition of ice-cold 10% sodium borohydride and 5% sodium hydroxide. In the hydride generation technique the evolved metal hydrides are decomposed in a heated quartz cell prior to determination by atomic absorption spectrometry. The hydride method offers improved sensitivity and lower detection limits compared to graphite furnace atomic absorption spectrometry. However, the most important advantage of hydride-generating techniques is the prevention of matrix interference, which is usually very important in the 200 nm area. [Pg.31]

Early colorimetric methods for arsenic analysis used the reaction of arsine gas with either mercuric bromide captured on filter paper to produce a yellow-brown stain (Gutzeit method) or with silver diethyl dithiocarbamate (SDDC) to produce a red dye. The SDDC method is still widely used in developing countries. The molybdate blue spectrophotometric method that is widely used for phosphate determination can be used for As(V), but the correction for P interference is difficult. Methods based on atomic absorption spectrometry (AAS) linked to hydride generation (HG) or a graphite furnace (GF) have become widely used. Other sensitive and specihc arsenic detectors (e.g., AFS, ICP-MS, and ICP-AES) are becoming increasingly available. HG-AES, in particular, is now widely used for routine arsenic determinations because of its sensitivity, reliability, and relatively low capital cost. [Pg.4565]

M. Ikeda, Determination of Selenium by Atomic Absorption Spectrometry with Miniaturized Suction-Flow Hydride Generation and On-Line Removal of Interferences. Anal. Chim. Acta, 170 (1985) 217. [Pg.443]

Initially hydride generation and cold vapour techniques were developed for the quantitative determination of the hydride-forming elements and mercury by atomic absorption spectrometry (Chapters, Sections 6.2 and 6.3), but nowadays these methods are also widely used in plasma atomic emission spectrometry. In the hydride generation technique, hydride-forming elements are more efficiently transported to the plasma than by conventional solution nebulization, and the production and excitation of free atoms and ions in the hot plasma is therefore more efficient. Spectral interferences are also reduced when the analyte is separated from the elements in the sample matrix. Both continuous (FIA) and batch approaches have been used for hydride generation. The continuous method is more frequently used in plasma AES than in AAS. Commercial hydride generation systems are available for various plasma spectrometers. [Pg.191]

Fiydride generation (and cold-vapor) techniques significantly improve atomic absorption spectrometry (AAS) concentration detection limits while offering several advantages (1) separation of the analyte from the matrix is achieved which invariably leads to improved accuracy of determination (2) preconcentration is easily implemented (3) simple chemical speciation may be discerned in many cases and (4) the procedures are amenable to automation. Disadvantages with the approach that are frequently cited include interferences from concomitant elements (notably transition metals), pH effects, oxidation state influences (which may be advantageously used for speciation) and gas-phase atomization interferences (mutual effect from other hydrides). [Pg.191]

Nowadays, atomic absorption spectrometry (AAS) systems are comparatively inexpensive element selective detectors, and some of the instruments also show multi(few)-element capability. There are flame (F AAS), cold vapor (CV AAS), hydride-generating (HG AAS), and graphite furnace (GF-AAS) systems. However, the use of AAS-based detectors for on-line speciation analysis is problematic. F AAS is usually not sensitive enough for speciation analysis at "normal" environmental or physiological concentrations and sample intake is high (4—5 ml/min), which complicates on-line hyphenations with LC an auxiliary flow is necessary. CV AAS and HG AAS use selective derivatization for matrix separation and increased sensitivity for the derivatized species. But, the detector response is species dependent and interferences can be a problem. GF AAS requires only a few microliters of sample and provides low detection limits, between 0.1 and 5 gg/1. Matrix interferences are widely eliminated by Zeeman correction and matrix modifiers nevertheless, quantification errors were reported as atomization temperature does not exceed 2900°C. The most critical problem in respect to speciation analysis is the discontinuous measiuement because of the temperature program operation employed, which takes a few minutes. Therefore, GF AAS is unsuitable for on-line hyphenations as chromatograms carmot be monitored with sufficient resolution. [Pg.643]


See other pages where Hydride generation atomic absorption spectrometry interferences is mentioned: [Pg.365]    [Pg.148]    [Pg.175]    [Pg.173]    [Pg.503]    [Pg.756]    [Pg.673]    [Pg.196]    [Pg.495]    [Pg.31]    [Pg.2012]    [Pg.191]    [Pg.1281]   
See also in sourсe #XX -- [ Pg.99 , Pg.100 ]




SEARCH



Absorption spectrometry

Absorption, interferences

Atom Generator

Atomic absorption spectrometry

Atomic absorption spectrometry atomizers

Atomic absorption spectrometry interferences

Atomic absorption spectrometry, hydride

Atomic interferences

Atomizing generators

Generation atoms

Generator, hydride

Hydride generation

Hydride generation atomic absorption

Hydride generation atomic absorption spectrometry

Hydride interference

Hydride-generating atomic absorption

Hydride-generating atomic absorption spectrometry

© 2024 chempedia.info