Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Assay quantitative analysis

Analytical Techniques. Sorbic acid and potassium sorbate are assayed titrimetricaHy (51). The quantitative analysis of sorbic acid in food or beverages, which may require solvent extraction or steam distillation (52,53), employs various techniques. The two classical methods are both spectrophotometric (54—56). In the ultraviolet method, the prepared sample is acidified and the sorbic acid is measured at 250 260 nm. In the colorimetric method, the sorbic acid in the prepared sample is oxidized and then reacts with thiobarbituric acid the complex is measured at - 530 nm. Chromatographic techniques are also used for the analysis of sorbic acid. High pressure Hquid chromatography with ultraviolet detection is used to separate and quantify sorbic acid from other ultraviolet-absorbing species (57—59). Sorbic acid in food extracts is deterrnined by gas chromatography with flame ionization detection (60—62). [Pg.284]

In a modern industrialised society the analytical chemist has a very important role to play. Thus most manufacturing industries rely upon both qualitative and quantitative chemical analysis to ensure that the raw materials used meet certain specifications, and also to check the quality of the final product. The examination of raw materials is carried out to ensure that there are no unusual substances present which might be deleterious to the manufacturing process or appear as a harmful impurity in the final product. Further, since the value of the raw material may be governed by the amount of the required ingredient which it contains, a quantitative analysis is performed to establish the proportion of the essential component this procedure is often referred to as assaying. The final manufactured product is subject to quality control to ensure that its essential components are present within a pre-determined range of composition, whilst impurities do not exceed certain specified limits. The semiconductor industry is an example of an industry whose very existence is dependent upon very accurate determination of substances present in extremely minute quantities. [Pg.3]

Assessment and definition of sensitivity are often described for quantitative analysis but are of equal importance for qualitative devices of the dip-stick type that are very popular for farm- or field-based screening assays. Because of the somewhat subjective nature of visually assessed assays, the assay s sensitivity must be validated using a number of observers to determine at what level a test is deemed positive. The number of false positives and false negatives must be carefully determined in order to balance consumer safety and potential economic loss to animal producers. [Pg.691]

Total flavonoid content. Quantitative analysis of flavonoids depends on the objective of the study. Colorimetric estimation of total flavonoid content is measured by the aluminum chloride colorimetric assay (Jia and others 1999 Chang and others 2002). The total flavonoid content measured in this way is normally expressed in equivalent values of a standard flavonoid, often catechin or quercetin equivalents. Not all subgroups of flavonoids can be quantified by colorimetric methods however, total anthocyanin content is determined using the pH-differentiation method (Boyles and others 1993). [Pg.140]

For quantitative analysis of protein concentration the colorimetric Bradford-assay [147] is most commonly used. Here another Coomassie dye, Brilliant Blue G-250, binds in acidic solutions to basic and aromatic side chains of proteins. Binding is detected via a shift in the absorption maximum of the dye from 465 nm to 595 nm. Mostly calibration is performed with standard proteins like bovine serum albumin (BSA). Due to the varying contents of basic and aromatic side chains in proteins, systematic errors in the quantification of proteins may occur. [Pg.77]

Our laboratory used the QTRAP MS/MS system for both quantitative analysis and metabolite profiling when assaying plasma samples. We found it useful to use three rules for deciding when to report a possible metabolite ... [Pg.216]

Although considered a basic technique, ultraviolet-visible (UV-vis) is perhaps the most widely used spectrophotometric technique for the quantitative analysis of pure chemical substances such as APIs in pharmaceutical analysis. For pharmaceutical dosage forms that do not present significant matrix interference, quantitative UV-vis measurements may also be made directly.114,115 It is estimated that UV-vis-based methods account for 10% of pharmacopoeia assays of drug substances and formulated products.116... [Pg.265]

The pharmaceutical industry comprises the largest segment, roughly 15 to 20%, of the infrared (IR) market. Modern mid-infrared instrumentation consists almost exclusively of Fourier transform (FT) instruments. Because of its ability to identify molecular species, FT-IR is routinely used as an identification assay for raw materials, intermediates, drug substances, and excipients. However, the traditional IR sample preparation techniques such as alkali halide disks, mulls, and thin films, are time-consuming and not always adequate for quantitative analysis. [Pg.266]

Commercial application of the dendrimer-based reagent technology has been demonstrated by the successful development of The Stratus CS STAT fluorometric analyzer [5] marketed by Dade Behring Inc. This rapid automated point of care immunoassay system provides quantitative analysis of whole blood or preprocessed plasma samples via unit use assay test packs. Up to four test packs can be introduced for each sample. All reagents [5-9] required for specimen analyses are contained within the test packs. [Pg.466]

A plethora of chemical reactions that are intimately associated with the quantitative analysis essentially belong to the class of reversible reactions. These reactions under certain prevailing experimental parameters are made to proceed to completion, whereas in certain other conditions they may even attain equilibrium before completion. In the latter instance, erroneous results may creep in with regard to the pharmaceutical substance under estimation. Hence, it has become absolutely necessary first to establish the appropriate conditions whereby the reactions must move forward to attain completion so as to achieve the ultimate objective in all quantitative assays. [Pg.174]

Part—I has three chapters that exclusively deal with General Aspects of pharmaceutical analysis. Chapter 1 focuses on the pharmaceutical chemicals and their respective purity and management. Critical information with regard to description of the finished product, sampling procedures, bioavailability, identification tests, physical constants and miscellaneous characteristics, such as ash values, loss on drying, clarity and color of solution, specific tests, limit tests of metallic and non-metallic impurities, limits of moisture content, volatile and non-volatile matter and lastly residue on ignition have also been dealt with. Each section provides adequate procedural details supported by ample typical examples from the Official Compendia. Chapter 2 embraces the theory and technique of quantitative analysis with specific emphasis on volumetric analysis, volumetric apparatus, their specifications, standardization and utility. It also includes biomedical analytical chemistry, colorimetric assays, theory and assay of biochemicals, such as urea, bilirubin, cholesterol and enzymatic assays, such as alkaline phosphatase, lactate dehydrogenase, salient features of radioimmunoassay and automated methods of chemical analysis. Chapter 3 provides special emphasis on errors in pharmaceutical analysis and their statistical validation. The first aspect is related to errors in pharmaceutical analysis and embodies classification of errors, accuracy, precision and makes... [Pg.539]

Precision and accuracy Quantitative analysis by NMR is very precise with relative standard deviations for independent measurements usually much lower than 5%. The largest errors in NMR measurements are likely due to sample preparation, not the NMR method itself. If a good set of standards is available and all NMR measurements for the test and standard samples are performed under the same acquisition conditions, the quantitative results can be readily reproduced on different instruments operated by different analysts at different times. Therefore, good intermediate precision can also be achieved. An accurate quantitative NMR assay will require accurately prepared standards. The accuracy of an NMR assay can be assessed, for example, by measuring an independently prepared standard or an accurate reference sample with the assay. In many cases, a spike recovery experiment can also be used to demonstrate the accuracy of an NMR assay. [Pg.323]

Methods used for the detection of PAs in cmde or partially purified extracts can also be adapted for post-column analysis after fractionation (see below). Direct quantitative analysis of PAs in crude grape phenolic extracts is often impossible due to the complex sample matrix. Thus, fractionation or purification is often necessary before analysis. The Folin-Ciocalteu and Pmssian Blue assays are widely used for the quantification of total polyphenols in plants [27,28]. These methods are not specific for PAs due to the reaction of other phenolic compounds with these reagents. [Pg.38]

The larger the amount of enzyme that can bind to the antibodies on the container s walls, the larger the amount of dye that is produced. Conversely, the larger the amount of the substance being assayed that is present in the sample, the smaller the amount of tracer that can be bound by the antibodies. Quantitative analysis can be carried out through parallel measurement using standards with a known concentration. [Pg.304]

A colorimetric assay procedure for the quantitative analysis of procaine hydrochloride was developed by Tan and Shelton [38]. The method is based on the interaction of procaine with /i-dimethylamino-... [Pg.430]


See other pages where Assay quantitative analysis is mentioned: [Pg.561]    [Pg.561]    [Pg.486]    [Pg.56]    [Pg.52]    [Pg.284]    [Pg.71]    [Pg.69]    [Pg.210]    [Pg.697]    [Pg.19]    [Pg.514]    [Pg.542]    [Pg.32]    [Pg.212]    [Pg.268]    [Pg.332]    [Pg.334]    [Pg.92]    [Pg.579]    [Pg.541]    [Pg.110]    [Pg.429]    [Pg.10]    [Pg.403]    [Pg.11]    [Pg.11]    [Pg.424]    [Pg.424]    [Pg.554]    [Pg.699]    [Pg.251]    [Pg.266]    [Pg.977]    [Pg.395]   
See also in sourсe #XX -- [ Pg.306 ]




SEARCH



Assay analysis

Quantitative analysis amplification assays

Quantitative analysis immunochemical assays

© 2024 chempedia.info