Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Application methods differences

Many defects that are to be eliminated by the use of additives are also influenced by the substrate to be coated and the application method. Differences between additives can be established in simple laboratory tests. However the final composition of a specific formulation must take into account as many application parameters as possible (e.g., the state of substrate, application method, and drying conditions). [Pg.171]

For the repetitive inspections the required hydrotest can only be performed for a limited number of the small cylinders, and even then the drums have to be removed from the line and the cylinders will be supported in defined distances for the weight of the water and the pressurisation. For the new and long cylinders even this is impossible, because they loose due to the additional weight of the water and the over-pressurisation their roundness and balances. Therefore the law in the most countries within and outside of the EU accept as a replacement of the hydrotest an additional application of different NDT methods, which were often done by an ultrasonic measurement of the wall thickness of the cylindrical part and a MT of the flat covers. [Pg.30]

There are difficulties of detecting defects in axial canal because of solid sediment layer of 1. 2 mm thick on the canal surface. When using known defectoscope devices a preliminary labor-intensive mechanical treatment of the axial canal surface is needed. The experience of application of different methods of rotor axial canal control in multifunction automatic device ROTOR - K has pointed to the fact that the most effective method is eddy current one [1]. All the dangerous cracks were just detected by the eddy current method, the part of the cracks were not... [Pg.346]

Application of different types of grounding methods (for HT, HV and EHV systems)... [Pg.668]

Arc suppression coil or ground fault neutralizer Ground fault factor (GFF) Magnitude of temporary overvoltages Insulation coordination Application of different types of grounding methods (for HT, HV and EHV systems) Important parameters for selecting a ground fault protection scheme... [Pg.997]

Task analysis is a fundamental methodology in the assessment and reduction of human error. A very wide variety of different task analysis methods exist, and it would be impracticable to describe all these techniques in this chapter. Instead, the intention is to describe representative methodologies applicable to different types of task. Techniques that have actually been applied in the CPI will be emphasized. An extended review of task analysis techniques is available in Kirwan and Ainsworth (1993). [Pg.161]

The classical methods used to separate the lanthanides from aqueous solutions depended on (i) differences in basicity, the less-basic hydroxides of the heavy lanthanides precipitating before those of the lighter ones on gradual addition of alkali (ii) differences in solubility of salts such as oxalates, double sulfates, and double nitrates and (iii) conversion, if possible, to an oxidation state other than -1-3, e g. Ce(IV), Eu(II). This latter process provided the cleanest method but was only occasionally applicable. Methods (i) and (ii) required much repetition to be effective, and fractional recrystallizations were sometimes repeated thousands of times. (In 1911 the American C. James performed 15 000 recrystallizations in order to obtain pure thulium bromate). [Pg.1228]

Enantiomeric separations have become increasingly important, especially in the pharmaceutical and agricultural industries as optical isomers often possess different biological properties. The analysis and preparation of a pure enantiomer usually involves its resolution from the antipode. Among all the chiral separation techniques, HPLC has proven to be the most convenient, reproducible and widely applicable method. Most of the HPLC methods employ a chiral selector as the chiral stationary phase (CSP). [Pg.24]

Avoid cavities and recesses because this application process does not coat the inside surface of an article adequately. Where they are essential elements of the design consider using a different application method. [Pg.327]

The most important component in the majority of paints is the binding medium, which determines the physical and chemical properties of the paint. Blends of binding media are often used to impart specific properties to the dry paint film or to suit a particular application method. The compatibility of chemically different types of binders is an important factor to be taken into account by the paint formulator. These properties will be modified, however, to a greater or lesser extent by the nature and quantity of the other components, more especially the pigment. The general characteristics of various binding media are given in Table 14.2. [Pg.577]

The determination of polarisation curves of metals by means of constant potential devices has contributed greatly to the knowledge of corrosion processes and passivity. In addition to the use of the potentiostat in studying a variety of mechanisms involved in corrosion and passivity, it has been applied to alloy development, since it is an important tool in the accelerated testing of corrosion resistance. Dissolution under controlled potentials can also be a precise method for metallographic etching or in studies of the selective corrosion of various phases. The technique can be used for establishing optimum conditions of anodic and cathodic protection. Two of the more recent papers have touched on limitations in its application and differences between potentiostatic tests and exposure to chemical solutions. ... [Pg.1107]

Because of peak overlappings in the first- and second-derivative spectra, conventional spectrophotometry cannot be applied satisfactorily for quantitative analysis, and the interpretation cannot be resolved by the zero-crossing technique. A chemometric approach improves precision and predictability, e.g., by the application of classical least sqnares (CLS), principal component regression (PCR), partial least squares (PLS), and iterative target transformation factor analysis (ITTFA), appropriate interpretations were found from the direct and first- and second-derivative absorption spectra. When five colorant combinations of sixteen mixtures of colorants from commercial food products were evaluated, the results were compared by the application of different chemometric approaches. The ITTFA analysis offered better precision than CLS, PCR, and PLS, and calibrations based on first-derivative data provided some advantages for all four methods. ... [Pg.541]

In the case of being successful in calculating multiple conformations by using time- or ensemble-averaged MD restraints the solved molecular structures are presented as 3D models and can be deposited in an electronic structure database (17). Finally, it is recommended to provide an accurate explanation of the procedures used for the structure elucidation because the application of different methods (NMR, DG, MD, SA, Monte-Carlo calculations. X-ray crystallography) may result in varying conformational models which do not implicitly display the real state of a molecule. This aspect should be always kept in mind when dealing with structure determination methods. [Pg.246]

Paschke, A., Manz, M., Schtiurmann, G. Application of different RP-HPLC methods for the determination of the octanol/water partition coefficient of selected tetrachlorobenzyltoluenes. Chemosphere 2001, 45, 721-728. [Pg.353]

Although we speak generally of validated methods , only the performance of a method applied to a particular range of materials (matrices) is reported. The possibility of matrix interferences or the efficiency of cleanup steps may vary with matrix type. For that reason, methods should be validated in all matrix types, which differ significantly. In the context of the validation of enforcement methods by applicants, significant difference is not a well defined term. To avoid any dispute about completeness of validation, five material types had been selected for crops, which usually... [Pg.106]

All of the compounds (pyraflufen-ethyl and its metabolites) are converted to E-2 and quantified as the total toxic residue of pyraflufen-ethyl. The conversion to E-2 is carried out by oxidative decomposition with concentrated sulfuric acid. The reaction mixture is extracted with a solvent and subjected to simple cleanup, followed by GC/NPD analysis. This method is rapid and simple compared with the Multi-residue analytical method , and has wide applicability to different varieties of the samples, such as plant materials, soils and water, with only minor adjustment of the analytical method. [Pg.542]

The application of 13C NMR for the rapid analysis of the oil composition of oil seeds is well known [16], 13C NMR has recently been applied to the quantitative analysis of the most abundant fatty acids in olive oil [17]. The values obtained by this method differed by only up to 5% compared with GLC analysis. The quantitative analysis was applied to the olefmic region of the high resolution 13C NMR spectrum of virgin olive oil to detect adulteration by other oils which differed significantly in their fatty acid composition. The application of the methodology for the detection of adulteration of olive oil by hazelnut oil is more challenging as both oils have similar chemical profiles and further experiments are in progress. [Pg.479]

The mobile phase in LC-MS may play several roles active carrier (to be removed prior to MS), transfer medium (for nonvolatile and/or thermally labile analytes from the liquid to the gas state), or essential constituent (analyte ionisation). As LC is often selected for the separation of involatile and thermally labile samples, ionisation methods different from those predominantly used in GC-MS are required. Only a few of the ionisation methods originally developed in MS, notably El and Cl, have found application in LC-MS, whereas other methods have been modified (e.g. FAB, PI) or remained incompatible (e.g. FD). Other ionisation methods (TSP, ESI, APCI, SSI) have even emerged in close relationship to LC-MS interfacing. With these methods, ion formation is achieved within the LC-MS interface, i.e. during the liquid- to gas-phase transition process. LC-MS ionisation processes involve either gas-phase ionisation (El), gas-phase chemical reactions (Cl, APCI) or ion evaporation (TSP, ESP, SSI). Van Baar [519] has reviewed ionisation methods (TSP, APCI, ESI and CF-FAB) in LC-MS. [Pg.500]

SEC-FTIR yields the average polymer structure as a function of molecular mass, but no information on the distribution of the chemical composition within a certain size fraction. SEC-FTIR is mainly used to provide information on MW, MWD, CCD, and functional groups for different applications and different materials, including polyolefins and polyolefin copolymers [703-705]. Quantitative methods have been developed [704]. Torabi et al. [705] have described a procedure for quantitative evaporative FUR detection for the evaluation of polymer composition across the SEC chromatogram, involving a post-SEC treatment, internal calibration and PLS prediction applied to the second derivative of the absorbance spectrum. [Pg.528]

Coupling an electrochemical cell to an analytical device requires that hindering technical problems be overcome. In the last years there has been a considerable improvement in the combined use of electrochemical and analytical methods. So, for instance, it is now possible to analyze on-line electrode products during the simultaneous application of different potential or current programs. A great variety of techniques are based on the use of UH V for which the emersion of the electrode from the electrolytic solution is necessary. Other methods allow the in situ analysis of the electrode surface i.e the electrode reaction may take place almost undisturbed during surface examination. In the present contribution we shall confine ourselves to the application of some of those methods which have been shown to be very valuable for the study of organic electrode reactions. [Pg.128]

Polycarbonates are manufactured via interfacial polymerization or through a melt esterification process. The properties of polycarbonate can differ greatly based on the method of polymerization. Specifically, the molecular weight distributions created by the two methods differ because of kinetic effects. Polycarbonates manufactured via interfacial polymerization tend to be less stable at high temperatures and less stiff than those produced via melt esterification, unless proper manufacturing precautions are taken. Therefore, when choosing a polycarbonate resin grade for a specific application, it is important to know the method by which it was produced. Either polymerization method can be performed as a continuous or batch process. [Pg.320]

It should be clear that the Darwin equation with its special LoRENTZ-polariza-tion factor as reported by Warren ([97], Eq. (4.7)) is only valid for unpolarized laboratory sources and the rotation-crystal method. An application to different setup geometries, for example to synchrotron GIWAXS data of polymer thin films is not appropriate. [Pg.109]

Kempa, H. Fugmann, U. Hahn, U. Schmidt, G. Meier, B. Bartzsch, M. Fisher, T. Stanerl, M. Reuter, K. Preibler, K. Huebler, A. 2006. On the applicability of different mass printing methods for the deposition of organic functional materials. Proceedings of OEC-06 Peer Reviewed Papers, pp. 39. [Pg.403]

Conductivity sensors are most commonly used for safety purposes in household appliances. Presence and absence of washing liquor, detergency, and water softener can be easily measured and proper operation ensured [71]. The various applications mainly differ by their design of electrode geometry and methods for electrical measurement. Due to the close relation between ionic conductivity and water hardness, the automatic water softener in an automatic dishwasher can be controlled by a conductivity sensor [72]. To isolate the transmission of the measured value from the process controller, the conductivity sensor could incorporate an opto-electronical coupling [73]. Thus, protective insulation of the electrodes in a washer-dryer could be ensured. [Pg.107]

Shetlar DJ. (1999) Application methods in different cropping systems. In Proceedings of the workshop on optimal use of insecticidal nematodes in pest management, August 28-30, New Brunswick, New Jersey, pp 31-36. [Pg.376]

The requirements for new glycosylation methods outlined at the beginning of this chapter, namely convenient diastereocontrolled anomeric O-ac-tivation (first step) and subsequent efficient diasterecontrolled glycosylation promoted by genuinely catalytic amounts of a catalyst (second step), are essentially completely fulfilled by the trichloroacetimidate method. This is clearly shown by the many examples and references given in this article. In terms of stability, reactivity, and applicability toward different acceptors, the... [Pg.116]

Selective methods for deprotecting glycopeptides either at the amino or at the carboxyl terminus have been developed during the past decade by introduction and application of different combinations of protecting groups (Table II). [Pg.294]

A number of studies have reported the application of different HPLC methods for the analysis of surfactants in wastewaters, surface waters, sediments, sludges and biological samples and several comprehensive reviews have been published on this issue [1—3]. [Pg.118]


See other pages where Application methods differences is mentioned: [Pg.1681]    [Pg.657]    [Pg.25]    [Pg.2]    [Pg.590]    [Pg.260]    [Pg.60]    [Pg.109]    [Pg.92]    [Pg.81]    [Pg.232]    [Pg.582]    [Pg.489]    [Pg.630]    [Pg.321]    [Pg.393]    [Pg.27]    [Pg.10]    [Pg.20]    [Pg.420]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Difference method

Different Methods

Finite difference methods application

Grounding different methods, application

Spectroscopic Methods Applicable to Different Sample Sizes

© 2024 chempedia.info