Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxide ion basicity

Equation 9-72 indicates that the logarithm of the ratio of the concentrations of adsorbed protons (acidic occupied proton level) to adsorbed hydroxide ions (basic vacant proton level) depends linearly on the pH of the solution. [Pg.321]

The reductive cleavage of sulphonium salts in aprotic solvents leads to the generation of radical and then carbanions in a further electron transfer step. Protonation of the carbanion by extraneous water leaves a hydroxide ion. Basic species formed in this way can abstract a proton from sulphonium ion to give the ylid, which is not reducible. A good example is the reduction of 9 in dimethylsulphox-ide, which consumes only one Faraday and follows the course shown [58]. [Pg.169]

The same reasons that made hydroxide ion basic (chiefly that it is unstable as an anion and therefore reactive ) make it a good nucleophile. Basicity is just nucleophilicity towards a proton and nucleophilicity towards carbon must be related. You saw in Chapter 12 that nucleophilicity towards the carbonyl group is directly related to basicity. The same is not quite so true for nucleophilic attack... [Pg.413]

Acidic solutions contain more hydrogen ions than hydroxide ions neutral solutions contain equal concentrations of hydrogen ions and hydroxide ions basic solutions contain more hydroxide ions than hydrogen ions. [Pg.629]

As discussed above, the reaction mechanisms for acid or base catalysis are very different. Furthermore, the reaction rates for hydrolysis and condensation of silicon alkoxides have different pH dependence (Figure 1.3). The minimal reaction rate for hydrolysis is at pH 7, and for condensation at around pH 4.5. The latter corresponds to the PZC of silica At pH <5, hydrolysis is feivored, and condensation is the rate-determining step. A large number of monomers or small oligomers with reactive Si—OH groups are simultaneously formed. In contrast, hydrolysis is the rate-determining step at pH >5, and hydrolyzed species are immediately consumed because of the faster condensation. Catalysis by fluoride ions is similar to that of hydroxide ions (basic conditions). [Pg.9]

In the strongly basic medium, the reactant is the phenoxide ion high nucleophilic activity at the ortho and para positions is provided through the electromeric shifts indicated. The above scheme indicates theorpara substitution is similar. The intermediate o-hydroxybenzal chloride anion (I) may react either with a hydroxide ion or with water to give the anion of salicyl-aldehyde (II), or with phenoxide ion or with phenol to give the anion of the diphenylacetal of salicylaldehyde (III). Both these anions are stable in basic solution. Upon acidification (III) is hydrolysed to salicylaldehyde and phenol this probably accounts for the recovery of much unreacted phenol from the reaction. [Pg.692]

Hydrogen sulfide ion HS and anions of the type RS are substantially less basic than hydroxide ion and react with both primary and secondary alkyl halides to give mainly substitution products... [Pg.349]

The role of the basic catalyst (HO ) is to increase the rate of the nucleophilic addi tion step Hydroxide ion the nucleophile m the base catalyzed reaction is much more reactive than a water molecule the nucleophile m neutral solutions... [Pg.716]

Once It was established that hydroxide ion attacks the carbonyl group in basic ester hydrolysis the next question to be addressed concerned whether the reaction is concerted or involves a tetrahedral intermediate In a concerted reaction the bond to the leaving group breaks at the same time that hydroxide ion attacks the carbonyl... [Pg.855]

Direct Titrations. The most convenient and simplest manner is the measured addition of a standard chelon solution to the sample solution (brought to the proper conditions of pH, buffer, etc.) until the metal ion is stoichiometrically chelated. Auxiliary complexing agents such as citrate, tartrate, or triethanolamine are added, if necessary, to prevent the precipitation of metal hydroxides or basic salts at the optimum pH for titration. Eor example, tartrate is added in the direct titration of lead. If a pH range of 9 to 10 is suitable, a buffer of ammonia and ammonium chloride is often added in relatively concentrated form, both to adjust the pH and to supply ammonia as an auxiliary complexing agent for those metal ions which form ammine complexes. A few metals, notably iron(III), bismuth, and thorium, are titrated in acid solution. [Pg.1167]

Strong and Weak Bases Just as the acidity of an aqueous solution is a measure of the concentration of the hydronium ion, H3O+, the basicity of an aqueous solution is a measure of the concentration of the hydroxide ion, OH . The most common example of a strong base is an alkali metal hydroxide, such as sodium hydroxide, which completely dissociates to produce the hydroxide ion. [Pg.141]

Although reasonably stable at room temperature under neutral conditions, tri- and tetrametaphosphate ions readily hydrolyze in strongly acidic or basic solution via polyphosphate intermediates. The hydrolysis is first-order under constant pH. Small cycHc phosphates, in particular trimetaphosphate, undergo hydrolysis via nucleophilic attack by hydroxide ion to yield tripolyphosphate. The ring strain also makes these stmctures susceptible to nucleophilic ring opening by other nucleophiles. [Pg.339]

Cadmium Hydroxide. Cd(OH)2 [21041-95-2] is best prepared by addition of cadmium nitrate solution to a boiling solution of sodium or potassium hydroxide. The crystals adopt the layered stmcture of Cdl2 there is contact between hydroxide ions of adjacent layers. Cd(OH)2 can be dehydrated to the oxide by gende heating to 200°C it absorbs CO2 from the air forming the basic carbonate. It is soluble ia dilute acids and solutions of ammonium ions, ferric chloride, alkah haUdes, cyanides, and thiocyanates forming complex ions. [Pg.395]

Dehydrogenation is considered to occur on the corners, edges, and other crystal defect sites on the catalyst where surface vacancies aid in the formation of intermediate species capable of competing for hydrogen with ethylbenzene. The role of the potassium may be viewed as a carrier for the strongly basic hydroxide ion, which is thought to help convert highly aromatic by-products to carbon dioxide. [Pg.198]

Basic catalysts fimction by deprotonating water to give the more nucleophilic hydroxide ion. [Pg.451]

A base is any material that produces hydroxide ions when it is dissolved in water. The words alkaline, basic, and caustic are often used synonymously. Common bases include sodium hydroxide (lye), potassium hydroxide (potash lye), and calcium hydroxide (slaked lime). The concepts of strong versus weak bases, and concentrated versus dilute bases are exactly analogous to those for acids. Strong bases such as sodium hydroxide dissociate completely while weak bases such as the amines dissociate only partially. As with acids, bases can be either inorganic or organic. Typical reactions of bases include neutralization of acids, reaction with metals, and reaction with salts ... [Pg.165]

Addition of hydride ion from the catalyst gives the adsorbed dianion (15). The reaction is completed and product stereochemistry determined by protonation of these species from the solution prior to or concurrent with desorption. With the heteroannular enolate, (13a), both cis and trans adsorption can occur with nearly equal facility. When an angular methyl group is present trans adsorption (14b) predominates. Protonation of the latter species from the solution gives the cis product. Since the heteroannular enolate is formed by the reaction of A" -3-keto steroids with strong base " this mechanism satisfactorily accounts for the almost exclusive formation of the isomer on hydrogenation of these steroids in basic media. The optimum concentration of hydroxide ion in this reaction is about two to three times that of the substrate. [Pg.116]

Throughout this section the hydronium ion and hydroxide ion concentrations appear in rate equations. For convenience these are written [H ] and [OH ]. Usually, of course, these quantities have been estimated from a measured pH, so they are conventional activities rather than concentrations. However, our present concern is with the formal analysis of rate equations, and we can conveniently assume that activity coefficients are unity or are at least constant. The basic experimental information is k, the pseudo-first-order rate constant, as a function of pH. Within a senes of such measurements the ionic strength should be held constant. If the pH is maintained constant with a buffer, k should be measured at more than one buffer concentration (but at constant pH) to see if the buffer affects the rate. If such a dependence is observed, the rate constant should be measured at several buffer concentrations and extrapolated to zero buffer to give the correct k for that pH. [Pg.273]

During the next fifty years the interest in derivatives of divalent carbon was mainly confined to methylene (CHg) and substituted methylenes obtained by decomposition of the corresponding diazo compounds this phase has been fully reviewed by Huisgen. The first convincing evidence for the formation of dichlorocarbene from chloroform was presented by Hine in 1950. Kinetic studies of the basic hydrolysis of chloroform in aqueous dioxane led to the suggestion that the rate-determining step was loss of chloride ion from the tri-chloromethyl anion which is formed in a rapid pre-equilibrium with hydroxide ions ... [Pg.58]

An artificial fruit beverage contains 12.0 g of tartaric acid, H2C4H406, to achieve tartness. It is titrated with a basic solution that has a density of 1.045 g/cm3 and contains 5.00 mass percent KOH. What volume of the basic solution is required (One mole of tartaric acid reacts with two moles of hydroxide ion.)... [Pg.97]


See other pages where Hydroxide ion basicity is mentioned: [Pg.131]    [Pg.40]    [Pg.716]    [Pg.1167]    [Pg.404]    [Pg.375]    [Pg.130]    [Pg.168]    [Pg.277]    [Pg.459]    [Pg.476]    [Pg.483]    [Pg.377]    [Pg.396]    [Pg.716]    [Pg.275]    [Pg.301]    [Pg.552]    [Pg.49]    [Pg.308]    [Pg.311]    [Pg.37]    [Pg.38]   
See also in sourсe #XX -- [ Pg.132 ]




SEARCH



Basic solutions hydroxide ion

Hydroxide ion

Hydroxide ion in basic solutions

© 2024 chempedia.info