Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In-situ analyses

It is becoming more and more desirable for the analytical chemist to move away from the laboratory and iato the field via ia-field instmments and remote, poiat of use, measurements. As a result, process analytical chemistry has undergone an offensive thmst ia regard to problem solviag capabihty (77—79). In situ analysis enables the study of key process parameters for the purpose of definition and subsequent optimization. On-line analysis capabihty has already been extended to gc, Ic, ms, and ftir techniques as well as to icp-emission spectroscopy, flow iajection analysis, and near iafrared spectrophotometry (80). [Pg.397]

A wide variety of particle size measurement methods have evolved to meet the almost endless variabiUty of iadustrial needs. For iastance, distinct technologies are requited if in situ analysis is requited, as opposed to sampling and performing the measurement at a later time and/or in a different location. In certain cases, it is necessary to perform the measurement in real time, such as in an on-line appHcation when size information is used for process control (qv), and in other cases, analysis following the completion of the finished product is satisfactory. Some methods rapidly count and measure particles individually other methods measure numerous particles simultaneously. Some methods have been developed or adapted to measure the size distribution of dry or airborne particles, or particles dispersed inhquids. [Pg.130]

Prechromatographic dansylation has the advantage that chromatography separates excess reagent and also the fluorescent by-products (e g dansyl hydroxide) from the reaction products of the substances to be determined In the case of postchromatographic dansylation the whole of the plate baekground fluoresees blue, so that in situ analysis is made more diflicult... [Pg.72]

These forms are useful if [L] is known, either from an in situ analysis (e.g., a chloride ion electrode to measure [Cl-]) or because the experiment was designed with [L] [A]. If, on the other hand, the concentration of free A is known or more eas-... [Pg.146]

More sensitive detection methods and more objective recordmg methods (e g the employment of scanners) are constantly been stnven for m order to overcome this illusion It IS for this reason too that fluorescent methods have been introduced to an increasing extent on account of their higher detection sensitivity This allows an appreciable reduction in the amount of sample applied, so that possible interfering substances are also present m smaller quantities This increases the quality of the chromatographic separation and the subsequent in situ analysis... [Pg.543]

In situ analysis of the reaction products can also be carried out by mass spectrometry, using the differential electrochemical mass spectrometry (DBMS) technique.This technique permits the detection of gaseous products since they are produced and captured through a porous electrode. It has been confirmed that carbon dioxide is the main reaction product. With this technique, it is also possible to determine the production of CO2... [Pg.75]

Hess A, B Zarda, D Hahn, A Haner, D Stax, P Hohener, J Zeyer (1997) In situ analysis of denitrifying toluene-and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63 2136-2141. [Pg.634]

SIMS has also been successfully applied for thorium isotopic measurement during the past decade. This technique has been applied for both chemically separated thorium samples (England et al. 1992 Bourdon et al. 1994 Layne and Sims, 2000), as well as in-situ analysis of minerals with high thorium content such as zircons (Reid et al. 1997). [Pg.38]

SIMS techniques have occupied somewhat of a narrower niche in uranium-series analysis, but have significantly improved Th isotope analysis relative to TIMS for chemically separated samples. The major improvement relative to TIMS is an improvement by about an order of magnitude in efficiency or sample size requirements for silicates. For uranium and/or thorium rich minerals such as carbonates and zircons, both SIMS and laser-ablation MC-ICPMS have been used for the direct in situ analysis of U and Th isotopes (Reid et al. 1997 Stirling et al. 2000) on very small (pg to ng levels of total U and Th) samples, at 10-100 pm scale resolution. [Pg.54]

Principles and Characteristics Vibrational spectroscopic techniques such as IR and Raman are exquisitely sensitive to molecular structure. These techniques yield incisive results in studies of pure compounds or for rather simple mixtures but are less powerful in the analysis of complex systems. The IR spectrum of a material can be different depending on the state of the molecule (i.e. solid, liquid or gas). In relation to polymer/additive analysis it is convenient to separate discussions on the utility of FUR for indirect analysis of extracts from direct in situ analysis. [Pg.311]

Principles and Characteristics The prospects of Raman analysis for structural information depend upon many factors, including sample scattering strength, concentration, stability, fluorescence and background scattering/fluorescence from the TLC substrate. Conventional dispersive Raman spectroscopy has been considered as a tool for in situ analysis of TLC spots, since most adsorbents give weak Raman spectra and minimal interference with the spectra of the adsorbed species. Usually both silica and cellulose plates yield good-quality conventional Raman spectra, as opposed to polyamide plates. Detection limits for TLC fractions... [Pg.535]

Martinez-Arias, A., Fernandez-Garcia, M., Iglesias-Juez, A. et al. (2001) New Pd/CexZrj x02/Al203 three-way catalysts prepared by microemulsion Part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO + NO + 02, Appl. Catal. B Environ., 31, 51. [Pg.135]

Coupling an electrochemical cell to an analytical device requires that hindering technical problems be overcome. In the last years there has been a considerable improvement in the combined use of electrochemical and analytical methods. So, for instance, it is now possible to analyze on-line electrode products during the simultaneous application of different potential or current programs. A great variety of techniques are based on the use of UH V for which the emersion of the electrode from the electrolytic solution is necessary. Other methods allow the in situ analysis of the electrode surface i.e the electrode reaction may take place almost undisturbed during surface examination. In the present contribution we shall confine ourselves to the application of some of those methods which have been shown to be very valuable for the study of organic electrode reactions. [Pg.128]

IR reflectance allows the in situ analysis of the electrode-electrolyte interface [8, 9], The Fourier transform variant adds to this technique the advantage of very fast data collection [10],... [Pg.128]

Manz, W. In situ analysis of microbial biofilms by rRNA-targeted oligonucleotide probing. Methods Enzymol. 1999,310,79-91. [Pg.17]

Three methods for quantitative analysis of niclosamide at concentrations of 0.5-2.0 ppm were given. For in situ analysis, safranine dye solution was added to the sample and the extraction solution added which formed the upper phase. The niclosamide content was determined by the color intensity of the upper phase. The colors were compared with blanks of known concentration. When an accurate determination was required, niclosamide was extracted from the water sample with amylacetate, a methanol solution of sodium hydroxide was added to the extraction, and the resulting yellow color was measured at 385 mft in a spectrophotometer. Third method made use of a calibration curve [60],... [Pg.87]

Infrared microscopy is well suited for in situ analysis of contaminants fount in pharmaceutical processes. Due to the nondestructive nature of the analysis further experiments such as energy dispersive x-ray analysis may be performer on the same sample once IR investigations are complete. To illustrate the potentia of IR microspectroscopy, one application from the Bristol-Myers Squibl laboratories is presented. [Pg.76]

Wong P SH, Cooks RG, Cisper ME, et al. 1995. On-line in situ analysis w ith membrane introduction MS. Environ Sci Technol 29(5) 215A-218A. [Pg.249]

Optical fiber detectors (OFD) are devices that measure electromagnetic radiation transmitted through optical fibers to produce a quantitative signal in response to the chemical or biochemical recognition of a specific analyte. Ideally, an OFD should produce a specific and accurate measurement, continuously and reversibly, of the presence of a particular molecular species in a given sample medium. Additionally, OFD should pro vide maximum sensitivity and minimal interferences fromsuperfluous ions or molecules to obtain low detection limits. Other attractive features include the miniaturization of the fiber s tip to accommodate single-cell analysis and portable instrumentation to allow in situ analysis. [Pg.183]

With the advent of multiple-collector inductively coupled plasma-source mass spectrometry (MC-ICPMS) it is now possible to measure Mg/ Mg and Mg/ Mg of Mg in solution with a reproducibility of 30 to 60 ppm or better (Galy et al. 2001). What is more, ultraviolet (UV) laser ablation combined with MC-ICPMS permits in situ analysis of Mg-bearing mineral samples with reproducibility of 100 to 200 ppm (Yoimg et al. 2002a). These new analytical capabilities allow mass-dependent fractionations of the isotopes of Mg to be used as tracers in natural systems. [Pg.197]

The properties of an ideal mass analyzer are well described, [2] but despite the tremendous improvements made, still no mass analyzer is perfect. To reach a deeper insight into the evolution of mass spectrometers the articles by Beynon, [3] Habfast and Aulinger, [4,5] Brunnee [6,7], Chapman et al. [8] and McLuckey [9] are recommended for further reading. In recent years, miniature mass analyzers have gained interest for in situ analysis, [10] e.g., in environmental [11] or biochemical applications, [12] for process monitoring, for detection of chemical warfare agents, for extraterrestrial applications, [13] and to improve Space Shuttle safety prior to launch. [14]... [Pg.112]

The literature contains numerous references to the use of MS/MS in the determination of new neuropeptides in identified cells of invertebrates (Bulau et al., 2004, for a recent example) and this technique is now being applied to in situ analysis of vertebrate tissues (Fournier et al., 2003). MS/MS is also used for studies of neuropeptide processing (Nilsson et al., 2001), pharmacokinetics of synthetic peptides (Mock et al., 2002), nonpeptide drug metabolism (Kamel et al., 2003), identification of peptides purified by immunoaffinity (Suresh Babu et al., 2004), and MALDI/MS/MS techniques adaptable to brain dialysis (Bogan and Agnes, 2004). [Pg.156]

For compounds that are usually not available in larger amounts or are expensive, e.g., many transition metal complexes, the static approach was applied as well (Fig. 14). Here, the cell is loaded with a known amount of the solute and SCCO2 of known density [124]. This technique is convenient, because it allows for in situ analysis, and the solvatation equilibrium is obtained easily. [Pg.123]


See other pages where In-situ analyses is mentioned: [Pg.314]    [Pg.653]    [Pg.562]    [Pg.10]    [Pg.29]    [Pg.40]    [Pg.41]    [Pg.392]    [Pg.536]    [Pg.616]    [Pg.726]    [Pg.730]    [Pg.25]    [Pg.8]    [Pg.44]    [Pg.188]    [Pg.266]    [Pg.279]    [Pg.261]    [Pg.303]    [Pg.313]    [Pg.195]    [Pg.63]    [Pg.158]    [Pg.100]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Analysis of samples in situ and their preservation

Fluorescent in situ hybridization FISH) analysis

In Situ FT-IR Analysis

In Situ Methods I. Brewster Angle Analysis

In situ infrared analysis

In situ particle size and shape analysis

In-situ X-ray analysis and EXAFS

Quantitative in situ analysis

Situ Analysis

Surface Analyses XPS In Situ

© 2024 chempedia.info