Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separation techniques, chiral

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

G. Subramanian (Ed.), Chiral Separation Techniques A Practical Approach, VCH Verlagsgesellschaft, Weinheim, 2000. ISBN 3527298754. [Pg.45]

Liquid-liquid extraction is a basic process already applied as a large-scale method. Usually, it does not require highly sophisticated devices, being very attractive for the preparative-scale separation of enantiomers. In this case, a chiral selector must be added to one of the liquid phases. This principle is common to some of the separation techniques described previously, such as CCC, CPC or supported-liquid membranes. In all of these, partition of the enantiomers of a mixture takes place thanks to their different affinity for the chiral additive in a given system of solvents. [Pg.15]

Among the existing separation techniques, some - due to their intrinsic characteristics - are more adapted than others to processing large amounts of material. Such processes, which already exist at industrial level, can be considered in order to perform an enantioselective separation. This is the case for techniques such as distillation and foam flotation, both of which constitute well-known techniques that can be adapted to the separation of enantiomers. The involvement of a chiral selector can be the clue which changes a nonstereoselective process into an enantioselective one. Clearly, this selector must be adapted to the characteristics and limitations of the process itself. [Pg.17]

All enantioselective separation techniques are based on submitting the enantiomeric mixture to be resolved to a chiral environment. This environment is usually created by the presence of a chiral selector able to interact with both enantiomers of the mixture, albeit with different affinities. These differences in the enantiomer-selector association will finally result in the separation that is sought. [Pg.18]

Enantiomeric separations have become increasingly important, especially in the pharmaceutical and agricultural industries as optical isomers often possess different biological properties. The analysis and preparation of a pure enantiomer usually involves its resolution from the antipode. Among all the chiral separation techniques, HPLC has proven to be the most convenient, reproducible and widely applicable method. Most of the HPLC methods employ a chiral selector as the chiral stationary phase (CSP). [Pg.24]

Chiral additives have been shown to be very effective for chiral separations by capillary electrophoresis (CE) [4, 5]. Indeed, it may be argued that there has been considerably more research activity in chiral separations by CE than by EC methods since the introduction of the former technique. Chiral additives in CE have several advantages, some of which are highlighted in Table 11-2. [Pg.288]

The versatility of chiral stationary phases and its effecitve application in both analytical and large-scale enantioseparation has been discussed in the earlier book A Practical Approach to Chiral Separation by Liquid Chromatography" (Ed. G. Sub-ramanian, VCH 1994). This book aims to bring to the forefront the current development and sucessful application chiral separation techniques, thereby providing an insight to researchers, analytical and industrial chemists, allowing a choice of methodology from the entire spectrum of available techniques. [Pg.354]


See other pages where Separation techniques, chiral is mentioned: [Pg.207]    [Pg.126]    [Pg.16]    [Pg.17]    [Pg.151]    [Pg.221]    [Pg.601]    [Pg.292]    [Pg.433]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Chiral drug separation techniques

Chiral separation techniques, comparison

Chiral separations

Chiral separations chirality

Chiralic separation

Separation techniques

© 2024 chempedia.info