Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols viscosity

Glycerin Solvent Stearyl alcohol Viscosity agent... [Pg.406]

In equipment similar to that indicated in Procedure 4-2, into 500 ml of a 2% solution of poly(vinyl alcohol) (viscosity and degree of hydrolysis not specified in the original patent) is added a solution of 500 gm of vinyl acetate containing 0.25 gm of dibenzoyl peroxide along with 5 ml of a 1.0% aqueous solution of hydrogen peroxide. With agitation, the mixture is heated for 6 hr at 70 C. The reaction mixture is then cooled to 4°C, filtered, and washed repeatedly with water at 5°C. The polymer is dried under reduced pressure at moderate temperatures (yield, 85% of theory). [Pg.245]

Actilane 423 Actilane 424 viscosity reducer epoxies, amine-curable Furfuryl alcohol viscosity stabilizer... [Pg.1637]

A limiting parameter for the choice of alcohol is viscosity. Most hybrid micellar phases obtained with alcohol addition have a higher viscosity than the corresponding micellar phase without alcohol. Viscosity increases dramatically with the alcohol chain length. The viscosity of the 0.285 M SDS phase was 1.65 cP producing a 95 kg/cm (9.5 MPa or 1400 p.s.i.) pressure at 1 mL/min with a 10 cm column. The viscosity of the 5% v/v pentanol SDS phase was 2.32 cP producing a 127 kg/cm (12.7 MPa or 1800 p.s.i.) pressure [25]. The viscosity of the 5% hexanol SDS phase was 11.8 cP which precluded its use at 1 mL/min. 0.5 mL/min flow rate was used. This has likely produced overestimated efficiencies for the hexanol points of Figure 6.4. [Pg.193]

Acid Alcohol Viscosity, cSt 100°C 40°C VI Pour Point,°C Wt% Volati- lity Wt% Biodegrad ability ... [Pg.119]

TABLE 12- EFFECT OF FERROUS IRON AND CARBON STEEL ON PAA SOLUTIONS CONTAINING SURFACTANTS OR ALCOHOLS. VISCOSITY LOSS (%)... [Pg.192]

Methylcellulose, carboxymethyl cellulose, polyvinyl alcohol, sodium polyacrylic, and polyacrylamide copolymer are also used for thickening agents. The qualities of methylcellulose and carboxymethyl cellulose are checked measuring the viscosity of water solution of 2-5%. For polyvinyl alcohol, viscosity (4% at 20°C), saponification number, and polymerization degree are indexes of the quahty. [Pg.1027]

Spreading velocities v are on the order of 15-30 cm/sec on water [39], and v for a homologous series tends to vary linearly with the equilibrium film pressure, it", although in the case of alcohols a minimum seemed to be required for v to be appreciable. Also, as illustrated in Fig. IV-3, substrate water is entrained to some depth (0.5 mm in the case of oleic acid), a compensating counterflow being present at greater depths [40]. Related to this is the observation that v tends to vary inversely with substrate viscosity [41-43]. An analysis of the stress-strain situation led to the equation... [Pg.110]

Physical Properties. All colourless liquids, completely miscible with water, except benzyl alcohol and cyclohexanol, which are slightly soluble. Pure glycol and glycerol have high viscosity, which falls as the hygroscopic liquids absorb water from the air. [Pg.335]

The cellulose molecule contains three hydroxyl groups which can react and leave the chain backbone intact. These alcohol groups can be esterified with acetic anhydride to form cellulose acetate. This polymer is spun into the fiber acetate rayon. Similarly, the alcohol groups in cellulose react with CS2 in the presence of strong base to produce cellulose xanthates. When extruded into fibers, this material is called viscose rayon, and when extruded into sheets, cellophane. In both the acetate and xanthate formation, some chain degradation also occurs, so the resulting polymer chains are shorter than those in the starting cellulose. [Pg.18]

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

Solution Properties. Typically, if a polymer is soluble ia a solvent, it is soluble ia all proportions. As solvent evaporates from the solution, no phase separation or precipitation occurs. The solution viscosity iacreases continually until a coherent film is formed. The film is held together by molecular entanglements and secondary bonding forces. The solubiUty of the acrylate polymers is affected by the nature of the side group. Polymers that contain short side chaias are relatively polar and are soluble ia polar solvents such as ketones, esters, or ether alcohols. As the side chaia iacreases ia length the polymers are less polar and dissolve ia relatively nonpolar solvents, such as aromatic or aUphatic hydrocarbons. [Pg.164]

SAN resins show considerable resistance to solvents and are insoluble in carbon tetrachloride, ethyl alcohol, gasoline, and hydrocarbon solvents. They are swelled by solvents such as ben2ene, ether, and toluene. Polar solvents such as acetone, chloroform, dioxane, methyl ethyl ketone, and pyridine will dissolve SAN (14). The interactions of various solvents and SAN copolymers containing up to 52% acrylonitrile have been studied along with their thermodynamic parameters, ie, the second virial coefficient, free-energy parameter, expansion factor, and intrinsic viscosity (15). [Pg.192]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Lubricants, Fuels, and Petroleum. The adipate and azelate diesters of through alcohols, as weU as those of tridecyl alcohol, are used as synthetic lubricants, hydrauHc fluids, and brake fluids. Phosphate esters are utilized as industrial and aviation functional fluids and to a smaH extent as additives in other lubricants. A number of alcohols, particularly the Cg materials, are employed to produce zinc dialkyldithiophosphates as lubricant antiwear additives. A smaH amount is used to make viscosity index improvers for lubricating oils. 2-Ethylhexyl nitrate [24247-96-7] serves as a cetane improver for diesel fuels and hexanol is used as an additive to fuel oil or other fuels (57). Various enhanced oil recovery processes utilize formulations containing hexanol or heptanol to displace oil from underground reservoirs (58) the alcohols and derivatives are also used as defoamers in oil production. [Pg.450]

Other thickeners used include derivatives of ceUulose such as methylceUulose, hydroxypropylmethylceUulose, and ceUulose gum natural gums such as tragacanth and xanthan (see Cellulose ethers Gums) the carboxyvinyl polymers and the poly(vinyl alcohol)s. The magnesium aluminum siHcates, glycol stearates, and fatty alcohols in shampoos also can affect viscosity. [Pg.450]

Additives. Because of their versatility, imparted via chemical modification, the appHcations of ethyleneimine encompass the entire additive sector. The addition of PEI to PVC plastisols increases the adhesion of the coatings by selective adsorption at the substrate surface (410). PEI derivatives are also used as adhesion promoters in paper coating (411). The adducts formed from fatty alcohol epoxides and PEI are used as dispersants and emulsifiers (412). They are able to control the viscosity of dispersions, and thus faciHtate transport in pipe systems (413). Eatty acid derivatives of PEI are even able to control the viscosity of pigment dispersions (414). The high nitrogen content of PEIs has a flame-retardant effect. This property is used, in combination with phosphoms compounds, for providing wood panels (415), ceUulose (416), or polymer blends (417,418) with a flame-retardant finish. [Pg.13]

The viscosity of the latex can also be dependent on pH. In the case of some latices, lowering the pH with a weak acid such as glycine is an effective method for raising the viscosity without destabilising the system. Latices made with poly(vinyl alcohol) as the primary emulsifier can be thickened by increasing the pH with a strong alkaU. [Pg.28]

The physical properties of finish removers vary considerably due to the diverse uses and requirements of the removers. Finish removers can be grouped by the principal ingredient of the formula, method of appHcation, method of removal, chemical base, viscosity, or hazardous classification. Except for method of apphcation, a paint remover formulation usually has one aspect of each group, by which it can be used for one or more appHcations. A Hst of the most common organic solvents used in finish removers has been compiled (3). Many are mentioned throughout this article others include ethyl lactate [97-64-3] propylene carbonate [108-32-7] furfural alcohol [98-01-1/, dimethyl formamide [68-12-2] tetrahydrofuran [109-99-9] methyl amyl ketone [110-43-0] dipropylene glycol methyl ether [34590-94-8] and Exxate 600, a trade name of Exxon Chemicals. [Pg.550]

Hydroxyethyl cellulose (HEC), a nonionic thickening agent, is prepared from alkali cellulose and ethylene oxide in the presence of isopropyl alcohol (46). HEC is used in drilling muds, but more commonly in completion fluids where its acid-degradable nature is advantageous. Magnesium oxide stabilizes the viscosity-building action of HEC in salt brines up to 135°C (47). HEC concentrations are ca 0.6—6 kg/m (0.2—21b/bbl). [Pg.179]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

Laminates. Laminate manufacture involves the impregnation of a web with a Hquid phenoHc resin in a dip-coating operation. Solvent type, resin concentration, and viscosity determine the degree of fiber penetration. The treated web is dried in an oven and the resin cures, sometimes to the B-stage (semicured). Final resin content is between 30 and 70%. The dry sheet is cut and stacked, ready for lamination. In the curing step, multilayers of laminate are stacked or laid up in a press and cured at 150—175°C for several hours. The resins are generally low molecular weight resoles, which have been neutralized with the salt removed. Common carrier solvents for the varnish include acetone, alcohol, and toluene. Alkylated phenols such as cresols improve flexibiUty and moisture resistance in the fused products. [Pg.306]

PhenoHc and furfuryl alcohol resins have a high char strength and penetrate into the fibrous core of the fiber stmcture. The phenoHc resins are low viscosity resoles some have been neutralized and have the salt removed. An autoclave is used to apply the vacuum and pressure required for good impregnation and sufficient heat for a resin cure, eg, at 180°C. The slow pyrolysis of the part foUows temperatures of 730—1000°C are recommended for the best properties. On occasion, temperatures up to 1260°C are used and constant weight is possible even up to 2760°C (93). [Pg.307]


See other pages where Alcohols viscosity is mentioned: [Pg.552]    [Pg.5850]    [Pg.5852]    [Pg.5853]    [Pg.317]    [Pg.552]    [Pg.5850]    [Pg.5852]    [Pg.5853]    [Pg.317]    [Pg.428]    [Pg.79]    [Pg.80]    [Pg.449]    [Pg.456]    [Pg.466]    [Pg.78]    [Pg.26]    [Pg.208]    [Pg.350]    [Pg.450]    [Pg.452]    [Pg.455]    [Pg.460]    [Pg.264]    [Pg.358]    [Pg.474]    [Pg.42]    [Pg.323]    [Pg.10]    [Pg.179]    [Pg.182]    [Pg.228]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Alcohol continued viscosity

Butyl alcohol viscosity

Ethyl alcohol viscosity

Polyvinyl alcohol intrinsic viscosity

Polyvinyl alcohol solution viscosity

Propyl alcohol viscosity

Viscosity Chain Linkage in Polyvinyl Alcohol

Viscosity-increasing agents polyvinyl alcohol

© 2024 chempedia.info