Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acidity continued sulfuric acid

Some automatic analyzers use conductance to indicate the concentration of some specific component. For example, ambient concentrations of SO2 in air as low as O.OI ppm can be recorded continuously. Sulfur dioxide is oxidized to sulfuric acid, after which the increase in conductance due to the hydrogen and sulfate ions is directly proportional to the SO2 concentration. The moisture content of wood and soil has been measured with special electrodes. [Pg.130]

Continuous Sulfuric Acid Alkylation Analyzer Bulletin 88-2. Drushal Design Development, Baton Rouge, La., 1988. [Pg.348]

Product removal during reaction. Sometimes the equilibrium conversion can be increased by removing the product (or one of the products) continuously from the reactor as the reaction progresses, e.g., by allowing it to vaporize from a liquid-phase reactor. Another way is to carry out the reaction in stages with intermediate separation of the products. As an example of intermediate separation, consider the production of sulfuric acid as illustrated in Fig. 2.4. Sulfur dioxide is oxidized to sulfur trioxide ... [Pg.36]

However, the laboratory data seem to indicate that a constant concentration in the reactor to maintain 63 percent sulfuric acid would be beneficial. Careful temperature control is also important. These two factors would suggest that a continuous well-mixed reactor is appropriate. There is a conflict. How can a well-defined residence time be maintained and simultaneously a constant concentration of sulfuric acid be maintained ... [Pg.52]

During my Cleveland years, I also continued and extended my studies in nitration, which I started in the early 1950s in Hungary. Conventional nitration of aromatic compounds uses mixed acid (mixture of nitric acid and sulfuric acid). The water formed in the reaetion dilutes the acid, and spent aeid disposal is beeoming a serious environ-... [Pg.104]

To solve some of the environmental problems of mixed-acid nitration, we were able to replaee sulfuric acid with solid superacid catalysts. This allowed us to develop a novel, clean, azeotropic nitration of aromatics with nitric acid over solid perfluorinated sulfonic acid catalysts (Nafion-H). The water formed is continuously azeotroped off by an excess of aromatics, thus preventing dilution of acid. Because the disposal of spent acids of nitration represents a serious environmental problem, the use of solid aeid eatalysts is a significant improvement. [Pg.105]

To a mixture of 25 ml of water and 3 ml of 95% sulfuric acid were added 40 ml of DMSO. The mixture was cooled to 10°C and 0.20 mol of l-ethoxy-l,4-hexadiyne (see Chapter III, Exp. 51) was added with vigorous stirring in 15 min. During this addition, which was exothermic, the temperature of the mixture was kept between 20 and 25 0. After the addition stirring was continued for 30 min at 3S C, then 150 ml of water were added and six extractions with diethyl ether were carried out. The combined extracts were washed with water and dried over magnesium sulfate. Evaporation of the solvent in a water-pump vacuum, followed by distillation through a 25-cm... [Pg.207]

Small amounts of propionitrile and bis(cyanoethyl) ether are formed as by-products. The hydrogen ions are formed from water at the anode and pass to the cathode through a membrane. The catholyte that is continuously recirculated in the cell consists of a mixture of acrylonitrile, water, and a tetraalkylammonium salt the anolyte is recirculated aqueous sulfuric acid. A quantity of catholyte is continuously removed for recovery of adiponitrile and unreacted acrylonitrile the latter is fed back to the catholyte with fresh acrylonitrile. Oxygen that is produced at the anodes is vented and water is added to the circulating anolyte to replace the water that is lost through electrolysis. The operating temperature of the cell is ca 50—60°C. Current densities are 0.25-1.5 A/cm (see Electrochemical processing). [Pg.221]

Polymerization. Paraldehyde, 2,4,6-trimethyl-1,3-5-trioxane [123-63-7] a cycHc trimer of acetaldehyde, is formed when a mineral acid, such as sulfuric, phosphoric, or hydrochloric acid, is added to acetaldehyde (45). Paraldehyde can also be formed continuously by feeding Hquid acetaldehyde at 15—20°C over an acid ion-exchange resin (46). Depolymerization of paraldehyde occurs in the presence of acid catalysts (47) after neutralization with sodium acetate, acetaldehyde and paraldehyde are recovered by distillation. Paraldehyde is a colorless Hquid, boiling at 125.35°C at 101 kPa (1 atm). [Pg.50]

A continuous bleed is taken from the reactor to remove high boilers. Values contained in this bleed are recovered in the bleed stripper and the distillate from this operation is recycled to the esterification reactor. The bleed stripper residue is a mixture of high boiling organic material and sulfuric acid, which is recovered for recycle in a waste sulfuric acid plant. [Pg.154]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Historically, the development of the acrylates proceeded slowly they first received serious attention from Otto Rohm. AcryUc acid (propenoic acid) was first prepared by the air oxidation of acrolein in 1843 (1,2). Methyl and ethyl acrylate were prepared in 1873, but were not observed to polymerize at that time (3). In 1880 poly(methyl acrylate) was reported by G. W. A. Kahlbaum, who noted that on dry distillation up to 320°C the polymer did not depolymerize (4). Rohm observed the remarkable properties of acryUc polymers while preparing for his doctoral dissertation in 1901 however, a quarter of a century elapsed before he was able to translate his observations into commercial reaUty. He obtained a U.S. patent on the sulfur vulcanization of acrylates in 1912 (5). Based on the continuing work in Rohm s laboratory, the first limited production of acrylates began in 1927 by the Rohm and Haas Company in Darmstadt, Germany (6). Use of this class of compounds has grown from that time to a total U.S. consumption in 1989 of approximately 400,000 metric tons. Total worldwide consumption is probably twice that. [Pg.162]

Automated analyzers may be used for continuous monitoring of ambient poUutants and EPA has developed continuous procedures (23) as alternatives to the referenced methods. Eor source sampling, EPA has specified extractive sampling trains and analytical methods for poUutants such as SO2 and SO [7446-11-9] sulfuric acid [7664-93-9] mists, NO, mercury [7439-97-6], beryUium [7440-41-7], vinyl chloride, and VOCs (volatile organic compounds). Some EPA New Source Performance Standards requite continuous monitors on specified sources. [Pg.384]

In the commonly used Welland process, calcium cyanamide, made from calcium carbonate, is converted to cyanamide by reaction with carbon dioxide and water. Dicyandiamide is fused with ammonium nitrate to form guanidine nitrate. Dehydration with 96% sulfuric acid gives nitroguanidine which is precipitated by dilution. In the aqueous fusion process, calcium cyanamide is fused with ammonium nitrate ia the presence of some water. The calcium nitrate produced is removed by precipitation with ammonium carbonate or carbon dioxide. The filtrate contains the guanidine nitrate that is recovered by vacuum evaporation and converted to nitroguanidine. Both operations can be mn on a continuous basis (see Cyanamides). In the Marquerol and Loriette process, nitroguanidine is obtained directly ia about 90% yield from dicyandiamide by reaction with sulfuric acid to form guanidine sulfate followed by direct nitration with nitric acid (169—172). [Pg.16]

Manufacture of Fatty Acids and Derivatives. Splitting of fats to produce fatty acids and glycerol (a valuable coproduct) has been practiced since before the 1890s. In early processes, concentrated alkaU reacted with fats to produce soaps followed by acidulation to produce the fatty acids. Acid-catalyzed hydrolysis, mostly with sulfuric and sulfonic acids, was also practiced. Pressurized equipment was introduced to accelerate the rate of the process, and finally continuous processes were developed to maximize completeness of the reaction (105). Lipolytic enzymes maybe utilized to spHt... [Pg.135]

Processes for Triacetate. There are both batch and continuous process for triacetate. Many of the considerations and support faciUties for producing acetate apply to triacetate however, no acetyl hydrolysis is required. In the batch triacetate sulfuric acid process, however, a sulfate hydrolysis step (or desulfonation) is necessary. This is carried out by slow addition of a dilute aqueous acetic acid solution containing sodium or magnesium acetate (44,45) or triethanolamine (46) to neutrali2e the Hberated sulfuric acid. The cellulose triacetate product has a combined acetic acid content of 61.5%. [Pg.296]

Trioxane and Tetraoxane. The cycHc symmetrical trimer of formaldehyde, trioxane [110-88-3] is prepared by acid-catalyzed Hquid- or vapor-phase processes (147—151). It is a colorless crystalline soHd that bods at 114.5°C and melts at 61—62°C (17,152). The heats of formation are — 176.9 kJ/mol (—42.28 kcal/mol) from monomeric formaldehyde and —88.7 kJ/mol (—21.19 kcal/mol) from 60% aqueous formaldehyde. It can be produced by continuous distillation of 60% aqueous formaldehyde containing 2—5% sulfuric acid. Trioxane is extracted from the distillate with benzene or methylene chloride and recovered by distillation (153) or crystallization (154). It is mainly used for the production of acetal resins (qv). [Pg.498]

The process options reflect the broad range of compositions and gas volumes that must be processed. Both batch processes and continuous processes are used. Batch processes are used when the daily production of sulfur is small and of the order of 10 kg. When the daily sulfur production is higher, of the order of 45 kg, continuous processes are usually more economical. Using batch processes, regeneration of the absorbant or adsorbant is carried out in the primary reactor. Using continuous processes, absorption of the acid gases occurs in one vessel and acid gas recovery and solvent regeneration occur in a separate reactor. [Pg.172]

Uranium ores are leached with dilute sulfuric acid or an alkaline carbonate [3812-32-6] solution. Hexavalent uranium forms anionic complexes, such as uranyl sulfate [56959-61-6], U02(S0 3, which are more selectively adsorbed by strong base anion exchangers than are other anions in the leach Hquors. Sulfate complexes are eluted with an acidified NaCl or ammonium nitrate [6484-52-2], NH NO, solution. Carbonate complexes are eluted with a neutral brine solution. Uranium is precipitated from the eluent and shipped to other locations for enrichment. Columnar recovery systems were popular in South Africa and Canada. Continuous resin-in-pulp (RIP) systems gained popularity in the United States since they eliminated a difficult and cosdy ore particle/leach hquor separation step. [Pg.387]

Sulfonation can be conducted with naphthalene—92 wt % H2SO4 in a 1 1.1 mole ratio with staged acid addition at 160°C over 2.5 h to give a 93% yield of the desired product (20). Continuous mono sulfonation of naphthalene with 96 wt % sulfuric acid in a cascade reactor at ca 160°C gives... [Pg.491]

A naphthalene sulfonation product that is rich in the 2,6-isomer and low in sulfuric acid is formed by the reaction of naphthalene with excess sulfuric acid at 125°C and by passing the resultant solution through a continuous wiped-film evaporator at 245°C at 400 Pa (3 mm Hg) (26). The separation in high yield of 99% pure 2,6-naphthalenedisulfonate, as its anilinium salt from a cmde sulfonation product, has been claimed (27). A process has been patented for the separation of 2,6-naphthalenedisulfonic acid from its isomers by treatment with phenylenediarnine (28). [Pg.491]

H-acid, l-hydroxy-3,6,8-ttisulfonic acid, which is one of the most important letter acids, is prepared as naphthalene is sulfonated with sulfuric acid to ttisulfonic acid. The product is then nitrated and neutralized with lime to produce the calcium salt of l-nitronaphthalene-3,6,8-ttisulfonic acid, which is then reduced to T-acid (Koch acid) with Fe and HCl modem processes use continuous catalytical hydrogenation with Ni catalyst. Hydrogenation has been performed in aqueous medium in the presence of Raney nickel or Raney Ni—Fe catalyst with a low catalyst consumption and better yield (51). Fusion of the T-acid with sodium hydroxide and neutralization with sulfuric acid yields H-acid. Azo dyes such as Direct Blue 15 [2429-74-5] (17) and Acid... [Pg.494]

Nickel sulfate also is made by the reaction of black nickel oxide and hot dilute sulfuric acid, or of dilute sulfuric acid and nickel carbonate. The reaction of nickel oxide and sulfuric acid has been studied and a reaction induction temperature of 49°C deterrnined (39). High purity nickel sulfate is made from the reaction of nickel carbonyl, sulfur dioxide, and oxygen in the gas phase at 100°C (40). Another method for the continuous manufacture of nickel sulfate is the gas-phase reaction of nickel carbonyl and nitric acid, recovering the soHd product in sulfuric acid, and continuously removing the soHd nickel sulfate from the acid mixture (41). In this last method, nickel carbonyl and sulfuric acid are fed into a closed-loop reactor. Nickel sulfate and carbon monoxide are produced the CO is thus recycled to form nickel carbonyl. [Pg.10]

For the process step involving handling of spent sulfuric acid, several patents have been issued in which improvements in this step were a main claim. The azeotropic nitration of benzene essentially eliminates the need to reconcentrate sulfuric acid (10,11). The nitration step is carried out at higher than usual temperatures (120—160°C). Because excess benzene is used, the higher temperature allows water to be removed as a water—benzene azeotrope. The water is separated and the benzene phase, containing approximately 8% nitrobenzene, is recycled back into the reactor. The dry sulfuric acid is then reused continuously. [Pg.65]

The reaction is completed after 6—8 h at 95°C volatiles, water, and some free phenol are removed by vacuum stripping up to 140—170°C. For resins requiring phenol in only trace amounts, such as epoxy hardeners, steam distillation or steam stripping may be used. Both water and free phenol affect the cure and final resin properties, which are monitored in routine quaHty control testing by gc. OxaHc acid (1—2 parts per 100 parts phenol) does not require neutralization because it decomposes to CO, CO2, and water furthermore, it produces milder reactions and low color. Sulfuric and sulfonic acids are strong catalysts and require neutralization with lime 0.1 parts of sulfuric acid per 100 parts of phenol are used. A continuous process for novolak resin production has been described (31,32). An alternative process for making novolaks without acid catalysis has also been reported (33), which uses a... [Pg.297]


See other pages where Acidity continued sulfuric acid is mentioned: [Pg.511]    [Pg.187]    [Pg.52]    [Pg.241]    [Pg.284]    [Pg.446]    [Pg.18]    [Pg.234]    [Pg.279]    [Pg.349]    [Pg.172]    [Pg.207]    [Pg.449]    [Pg.65]    [Pg.150]    [Pg.287]    [Pg.387]    [Pg.435]    [Pg.251]    [Pg.411]    [Pg.491]    [Pg.38]    [Pg.64]    [Pg.119]    [Pg.208]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Acid continued sulfuric

Acid continued sulfuric

Acid continued sulfurous

Acid continued sulfurous

Acidity continued

Acids continued

Sulfur continued

© 2024 chempedia.info