Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure accelerated solvent extraction

Accelerated solvent extraction (pressurized fluid extraction) Semi-volatiles and non-volatile organics from soils, relatively dry sludges and solid wastes Extraction under pressure using small volumes of organic solvent... [Pg.138]

In the past decade, new sample extraction techniques have been introduced to meet stricter criteria in the areas of food and agriculture, for example, enviromnentally friendly, non-toxic, fast, automated, robust, and cost-efficient techniques. Accelerated solvent extraction (ASE) and pressurized liquid extraction (PEE) are two methods developed for the extraction of chemicals of interest " and provide high yields and efficiency from a wide range of botanical, - animal, and biological samples. ASE and PLE combine solvents at elevated temperatures (40 to 200°C)... [Pg.482]

Accelerated solvent extraction (ASE) is a technique which attempts to merge the beneficial solvation properties of SFE with traditional organic solvents. Specifically, the sample is placed in an extraction vessel which can withstand high pressures while being maintained at a constant temperature. Extraction is carried out by pumping the extraction solvent through the samples for a limited time. As an example of the use of ASE, Richter and Covino extracted PCBs from a 10-g fish tissue sample with hexane... [Pg.306]

The main drawback of this technique is solvent and time-consuming. In the last decade, there have been efforts to develop extraction techniques that allow efficient extraction and reduced solvent volumes in shorter times, incorporating high levels of automation, such as pressurized liquid extraction (PLE) [commonly known as accelerated solvent extraction (ASE)]. [Pg.49]

More elaborate sample preparation is often needed for complex sample matrices, e.g., lotions and creams. Many newer SP technologies such as solid-phase extraction (SPE), supercritical fluid extraction (SFE), pressurized fluid extraction, accelerated solvent extraction (ASE), and robotics are frequently utilized (see Ref. [2]). Dosage forms such as suppositories, lotions, or creams containing a preponderance of hydrophobic matrices might require more elaborate SP and sample cleanup, such as SPE or liquid-liquid extraction. [Pg.34]

Accelerated solvent extraction is a new technique for the extraction of a range of organic pollutants from soils and related material. The technique is based on the use of a solvent or combination of solvents to extract organic pollutants at elevated pressure and temperature from a solid matrix. The range of organic pollutants for which the technique is proposed includes semivolatile compounds, organochlorine pesticides, organophosphorus pesticides, chlorinated herbicides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons [53-56],... [Pg.132]

Another method (EPA 3545, accelerated solvent extraction) has been validated using a variety of soil matrixes, ranging from sand to clay. In the method, conventional solvents such as methylene chloride (or a hexane-acetone mixture) are heated [100°C, (212°E)] and pressurized (2000 psi), then passed through the soil sample (this technique is also suitable for application to petroleum sludge and petroleum sediment). The method has the advantage of requiring smaller solvent volumes than is required by traditional solvent extraction techniques. [Pg.164]

In order to accelerate sample preparation, new extraction methodologies such as accelerated solvent extraction (ASE) and MAE, based on the use of elevated temperature and pressure to heat the mixture sample-solvent, have been recently developed and applied for PAH extraction from meat [695] and vegetables [696-698]. Garda Falcon et al. [699] used microwave treatment with hexane to accelerate PAH extraction from freeze-dried foods. The fat extracted in this way underwent microwave assisted saponification with ethanolic KOH. Hernandez-Borges et al. [700] combined microwave-assisted hydrolysis and extraction to isolate organic pollutants from mussels, while... [Pg.639]

The MISPE method of the authors uses a pressurized liquid extraction (also called accelerated solvent extraction) extract of the samples. This acetonitrile-methanol extract had to be dried and redissolved in acetonitrile because methanol was not compatible with the MISPE. The redissolution volume had to be relatively large (5 mL) due to solubility problems. The samples were loaded on the MIP, washed with 1 mL of water, and eluted with 3x1 mL of methanol/phosphoric acid (95 5 v/v) solution. The eluate was evaporated to dryness and redissolved in 1 mL of methanol. Final analysis was carried out by HPLC using fluorescence detection. [Pg.296]

Hubert et al. [101] state that accelerated solvent extraction compared to alternatives such as Soxhlet extraction, steam distillation, microwave extraction, ultrasonic extraction and, in some cases, supercritical fluid extraction is an exceptionally effective extraction technique. Hubert et al. [ 101 ] studied the effect of operating variables such as choice of solvent and temperature on the solvent extraction of a range of accelerated persistent organic pollutants in soil, including chlorobenzenes, HCH isomers, DDX, polychlorobiphenyl cogeners and polycyclic aromatic hydrocarbons. Temperatures ofbetween 20 and 180 °C were studied. The optimum extraction conditions use two extraction steps at 80 and 140 °C with static cycles (extraction time 35 minutes) using toluene as a solvent and at a pressure of 15 MPa. [Pg.10]

A method for determining CDDs in municipal incinerator fly ash has been reported (Alexandrou and Pawliszyn 1990). The method uses supercritical fluid extraction (SFE) to recover CDDs from fly ash samples prior to GC. Supercritical fluid extraction is faster and less expensive than the typically used Soxhlet extraction and gives quantitative removal of CDDs and CDFs from fly ash. Extracts obtained using SFE will still require additional clean-up steps prior to analysis. Supercritical C02 has also been used to assist solvent-based extraction of CDDs from soils (Friedrich and Kleibohmer 1997). In this case, the supercritical fluid was combined with accelerated solvent extraction (liquid extractions conducted under elevated temperature and pressure) to provide good recoveries relative to Soxhlet extractions. [Pg.561]

Accelerated solvent extraction (ASE) is also known as pressurized fluid extraction (PFE) or pressurized liquid extraction (PLE). It uses conventional solvents at elevated temperatures (100 to 180°C) and pressures (1500 to 2000 psi) to enhance the extraction of organic analytes from solids. ASE was introduced by Dionex Corp. (Sunnyvale, CA) in 1995. It evolved as a consequence of many years of research on SFE [45], SFE is matrix dependent and often requires the addition of organic modifiers. ASE was developed to overcome these limitations. It was expected that conventional solvents would be less efficient than supercritical fluids, which have higher diffusion coefficients and lower viscosity. However, the results turned out to be quite the opposite. In many cases, extraction was faster and more complete with organic solvents at elevated temperature and pressure than with SFE. Extensive research has been done on the extraction of a variety of samples with ASE. ASE was approved by EPA as a standard method in 1996. [Pg.155]

Accelerated solvent extraction (ASE) is becoming more popular because of its rapidity. This however is offset by sequential sample processing. Samples are placed in a stainless steel vessel and subj ected to solvent at elevated pressure and temperature. The pH of the extraction can be modified to assist in extracting acidic or basic compounds. [Pg.124]

As shown in Table 19.2, extraction with the mixture of methanol-water provides adequate extraction efficiency for most of the samples. However, this technique should be automated and the duration of sample preparation should be reduced. The usual methanolic extraction is carried out with the help of a shaking device and the total time of sample preparation including centrifugation and manual separation of the phases may be as long as 10-12 h. Recently, two new techniques have been introduced that can replace the traditional approach, that is, the accelerated solvent extraction (ASE), sometimes referred to as pressurized liquid extraction (PLE), and the MW assisted extraction (MAE). [Pg.625]

Pressurized solvent extraction (PSE), also called pressurized fluid extraction (PEE), accelerated solvent extraction (ASE ), pressurized liquid extraction (PEE), or enhanced solvent extraction (ESE), is a solid-liquid extraction that has been developed as an alternative to conventional extractions such as Soxhlet, maceration, percolation, or reflux. It uses organic solvents at high pressure and temperature to increase the efficiency of the extraction process. Increased temperature decreases the viscosity of the liquid solvent, enhances its diffusivity, and accelerates the extraction kinetics. High pressure keeps the solvent in its liquid state and thus facilitates its penetration into the matrix, resulting in increase extraction speed [30]. [Pg.345]

Novel sample preparation techniques include ultrasonic extractions that use high frequency acoustic waves to heat and break up samples (9), as well as microwave-assisted extractions (MAE) that use long wavelength radiation for faster and less energy intensive extractions of thermally sensitive analytes (JO-13). Other innovations treat samples with high pressure and high temperature solvents in the liquid or in the supercritical state. These adaptations reduce the overall solvent use and speed the extractions. These methods include accelerated solvent extraction (ASE) (14) and supercritical fluid extraction (SEE) (8). [Pg.108]

Static pressurized hot solvent extraction (SPHSE), which shall henceforward be referred to as accelerated solvent extraction (ASE) for the reasons stated above, is the less flexible PHSE mode in terms of alteration or coupling to other techniques but is so far the more widely used — in fact, it accounts for over 65% of the PHSE publications reported since 1994. This is mainly the result of the sole commercially available extractor (the Dionex 200 model) implementing the static mode alone and also of the large number of studies conducted by different or even the same authors on the same analytes in the same matrices, which have therefore contributed little or nothing new in this area [58-63]. [Pg.242]

A number of alternatives to Soxhlet extraction have been described. By pressurized liquid or accelerated solvent extraction, the extraction efficiency can be enhanced. Superheated water extraction, taking advantages of the decreased polarity of water at higher temperature and pressure, has been used for liquid extraction of solid samples as well. [Pg.18]


See other pages where Pressure accelerated solvent extraction is mentioned: [Pg.730]    [Pg.757]    [Pg.81]    [Pg.117]    [Pg.139]    [Pg.731]    [Pg.89]    [Pg.133]    [Pg.133]    [Pg.450]    [Pg.5]    [Pg.567]    [Pg.93]    [Pg.443]    [Pg.115]    [Pg.329]    [Pg.368]    [Pg.344]    [Pg.131]    [Pg.233]    [Pg.234]    [Pg.331]    [Pg.1239]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Accelerated solvent extraction solvents

Pressure acceleration

Solvent pressures

© 2024 chempedia.info