Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical state

Supercritical fluids make ideal solvents because their density is only about 30% that of a normal fluid, a factor sufficient to provide for good solvent capability, but low enough for high diffusivity and rapid mass transfer. A sample of gas is supercritical whenever its temperature and pressure are above thar critical values, but in practice the operating temperatures are not far above 7. A simple way to predict the solvent characteristics of a low-boiling substance in its supercritical state is to compare the boiling point (Ti,) and critical temperature (TJ of substance. The Guldberg s rule  [Pg.9]


Supercritical Mixtures Dehenedetti-Reid showed that conven-tionaf correlations based on the Stokes-Einstein relation (for hquid phase) tend to overpredict diffusivities in the supercritical state. Nevertheless, they observed that the Stokes-Einstein group D g l/T was constant. Thus, although no general correlation ap es, only one data point is necessaiy to examine variations of fluid viscosity and/or temperature effects. They explored certain combinations of aromatic solids in SFg and COg. [Pg.595]

In principle, the sample transfer from the Supercritical state is relatively easily adaptable to other systems, due to the high volatility of the fluid at atmospheric pressure, particularly for carbon dioxide which is the most frequently used fluid. [Pg.284]

Water in its supercritical state has fascinating properties as a reaction medium and behaves very differently from water under standard conditions [771]. The density of SC-H2O as well as its viscosity, dielectric constant and the solubility of various materials can be changed continuously between gas-like and liquid-like values by varying the pressure over a range of a few bars. At ordinary temperatures this is not possible. For instance, the dielectric constant of water at the critical temperature has a value similar to that of toluene. Under these conditions, apolar compounds such as alkanes may be completely miscible with sc-H2O which behaves almost like a non-aqueous fluid. [Pg.285]

The use of solvents above their normal conditions of temperature and pressure, up to and including the supercritical state, expands the range of analytical methods exploiting an overall spectrum of solubility, polarity and volatility properties of solvents and mobile phases. The fundamentals and applications of SCFs have been reviewed [243] and described in numerous books [248,251-256],... [Pg.83]

On the other hand, solvents usually show a decrease in dielectric constant with temperature. Efficiency of microwave absorption diminishes with temperature rise and can lead to poor matching of the microwave load, particularly as fluids approach the supercritical state. Solvents and reaction temperatures should be selected with these considerations in mind, as excess input microwave energy can lead to arcing. If allowed to continue unchecked, arcing could result in vessel rupture or perhaps an explosion, if flammable compounds are involved. Therefore it is important in microwave-assisted organic reactions, that the forward and reverse power can be monitored and the energy input be reduced (or the load matching device adjusted) if the reflected power becomes appreciable. [Pg.57]

Supercritical fluid chromatography employs supercritical fluid instead of gas or liquid to achieve separations. Supercritical fluids generally exist at conditions above atmospheric pressure and at an elevated temperature. As a fluid, the supercritical state generally exhibits properties that are intermediate to the properties of either a gas or a liqiud. Chapter 16 discusses various advantages of SFC over GC and HPLC and also provides some interesting applications. [Pg.18]

The discovery of supercritical fluids occurred in 1879, when Thomas Andrews actually described the supercritical state and used the term critical point. A supercritical fluid is a material above its critical point. It is not a gas, or a liquid, although it is sometimes referred to as a dense gas. It is a separate state of matter defined as all matter by both its temperature and pressure. Designation of common states in liquids, solids and gases, assume standard pressure and temperature conditions, or STP, which is atmospheric pressure and 0°C. Supercritical fluids generally exist at conditions above atmospheric pressure and at an elevated temperature. Figure 16.1 shows the typical phase diagram for carbon dioxide, the most commonly used supercritical fluid [1]. [Pg.564]

In condensed phases, the noncoincidence effect between IR and Raman spectra provides insights into the intermolecular coupling [170, 171]. The combination of IR and Raman spectroscopy is also useful in the study of alcohol clusters in the supercritical state [25]. [Pg.20]

The subject of chemical reactions under supercritical conditions is well outside the scope of matters of major concern to combustion related considerations. However, a trend to increase the compression ratio of some turbojet engines has raised concerns that the fuel injection line to the combustion chamber could place the fuel in a supercritical state that is the pyrolysis of the fuel in the line could increase the possibility of carbon formations such as soot. The... [Pg.139]

Liquefied or Supercritical Cases as Solvents for Electrolytes For very special applications, where the increased efforts for low temperature and/or pressurized cells are acceptable, liquefied gases, for example, sulfur dioxide or ammonia, can be interesting solvents for electrolytes (see e.g. [3a]). Supercritical fluids show remarkable properties that are very different from other solvents. Detrimental to electrochemistry is that especially the dielectric constant in the supercritical state becomes low. For supercritical carbon dioxide, no supporting electrolyte with sufficient conductivity is known. [Pg.51]

Based on microcellular thermoplastic foam technology, the MuCell process uses a blowing agent (typically CO2) that in a supercritical state creates foams with evenly distributed and uniformly sized microscopic cells, 5-50 qm for example. This foam... [Pg.837]

The critical point of CO2 is readily accessible at 304.1282 K and 7.3773 MPa. The supercritical state of CO2 is characterized by properties that are partly... [Pg.112]

In the past, the majority of high-pressure homogeneous catalytic reactions were conducted in batch systems, which may cause problems in scale-up for SCFs because of the higher pressures needed for achieving the supercritical state. Therefore, continuous processing has also been investigated in the last years. It would be preferable for industrial-scale SCF reactions, because it involves smaller and, hence, safer equipment [144-150]. In addition, capital costs are likely to be lower than in batch systems. [Pg.129]

Another way to produce biphenyl derivates using flow was described by Leeke et al. [34] where they performed a Pd catalyzed Suzuki-Miyaura synthesis in the presence of a base. First experiments were carried out in toluene/methanol solvent. A reaction mixture was passed through the encapsulated Pd filled column bed length 14.5 cm (some cases 10 cm) x 25.4 mm id. 45 g of PdEnCat. Base concentration, temperature and flow rate were optimized and at optimum parameters (0.05 M base concentration, 100°C and 9.9 mL/min) the conversion was 74%. Then the reaction was performed under supercritical conditions using supercritical CO2 at high pressure and temperature. After optimizing the concentration of base, flow rate, pressure and temperature, the highest conversion rate (81%) was observed at 166 bar and 100°C where the reactant mixture was monophasic in the supercritical state. This system is able to produce 0.06 g/min of the desired product. [Pg.409]

As an alternative to distillation, extraetion with a eo-solvent that is poorly mis-eible with the ionie liquid has often been used. There are many solvents that can be used to extract product from the ionic liquid phase, whether from a monophase reaction or from a partially miscible system. Typical solvents are alkanes and ethers (15). Supercritical CO2 (SCCO2) was recently shown to be a potential alternative solvent for extraction of organics from ionic liquids (22). CO2 has a remarkably high solubility in ionic liquids. The SCCO2 dissolves quite well in ionic liquids to facilitate extraction, but there is no appreciable ionic liquid solubilization in the CO2 phase in the supercritical state. As a result, pure products can be recovered. For example, about 0.5 mol fraction of CO2 was dissolved at 40°C and 50 bar pressure in [BMIMJPFe, but the total volume was only swelled by 10%. Therefore, supercritical CO2 may be applied to extract a wide variety of solutes from ionic liquids, without product contamination by the ionic liquid (29). [Pg.160]

Although CO2 is highly soluble in ionic liquids, there is no appreciable ionic liquid solubility in the CO2 phase in the supercritical state (29). [Pg.174]

The liquid state exists only below the critical point pressure and above the triple point pressure. When a vapor below the triple point pressure is cooled down, we encounter a discontinuous and abrupt phase change to solid but, above the critical point pressure, a cooled vapor turns into the supercritical state where the properties of the fluid... [Pg.139]

Supercritical carbon dioxide extraction (SCDE) is an ex sitn process for the treatment of low-level solid mixed and land disposal restricted (LDR) wastes. SCDE can extract hazardons solvents from waste snbstrates to prodnce land-disposable, low-level wastes. The process employs the snpercritical finid carbon dioxide as a solvent. This finid is noncombustible, nontoxic, and environmentally safe. In its supercritical state, carbon dioxide can dissolve organic contaminants allowing the fluid to quickly penetrate and facilitate transfer out of a contaminated matrix. [Pg.729]


See other pages where Supercritical state is mentioned: [Pg.91]    [Pg.2000]    [Pg.137]    [Pg.52]    [Pg.316]    [Pg.100]    [Pg.23]    [Pg.192]    [Pg.122]    [Pg.156]    [Pg.219]    [Pg.248]    [Pg.322]    [Pg.15]    [Pg.192]    [Pg.203]    [Pg.565]    [Pg.573]    [Pg.7]    [Pg.144]    [Pg.5]    [Pg.31]    [Pg.33]    [Pg.3]    [Pg.111]    [Pg.137]    [Pg.192]    [Pg.203]    [Pg.426]    [Pg.412]    [Pg.15]    [Pg.34]   
See also in sourсe #XX -- [ Pg.561 ]

See also in sourсe #XX -- [ Pg.337 ]

See also in sourсe #XX -- [ Pg.323 ]

See also in sourсe #XX -- [ Pg.214 , Pg.215 ]

See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.2635 , Pg.2636 ]

See also in sourсe #XX -- [ Pg.146 ]

See also in sourсe #XX -- [ Pg.45 , Pg.93 ]

See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Physical supercritical state

Supercritical fluids state

Supercritical state, characteristic values

The Supercritical State

Transition state theory and supercritical fluids

© 2024 chempedia.info