Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc oxide vulcanization

Zinc Oxide Transparent. [Miles lysar Rubber] Precipitated zinc oxide vulcanization accelerator/activator for transparent rubber goods. [Pg.413]

Polychloroprene. To 200 g of emulsion were added 2 g of a 50% water solution of sodium dibutyl dithiocarbamate, 8.3 g of zinc oxide dispersion, and 2 g of a butylated bisphenol A dispersion. The mixture was stirred and films were cast, dried, and cured as above, thereby crosslinking the polymer via two mechanisms the usual zinc oxide vulcanization, and a bisalkylation in which the crosslinking takes place at sites where there are tertiary allylic chlorine atoms formed by 1,2 polymerization of chloroprene monomer. [Pg.74]

Zinc oxide is a common activator in mbber formulations. It reacts during vulcanization with most accelerators to form the highly active zinc salt. A preceding reaction with stearic acid forms the hydrocarbon-soluble zinc stearate and Hberates water before the onset of cross-linking (6). In cures at atmospheric pressure, such as continuous extmsions, the prereacted zinc stearate can be used to avoid the evolution of water that would otherwise lead to undesirable porosity. In these appHcations, calcium oxide is also added as a desiccant to remove water from all sources. [Pg.225]

Activators. Activators are chemicals that increase the rate of vulcanization by reacting first with the accelerators to form mbber soluble complexes. These complexes then react with the sulfur to achieve vulcanization. The most common activators are combinations of zinc oxide and stearic acid. Other metal oxides have been used for specific purposes, ie, lead, cadmium, etc, and other fatty acids used include lauric, oleic, and propionic acids. Soluble zinc salts of fatty acid such as zinc 2-ethyIhexanoate are also used, and these mbber-soluble activators are effective in natural mbber to produce low set, low creep compounds used in load-bearing appHcations. Weak amines and amino alcohols have also been used as activators in combination with the metal oxides. [Pg.237]

The principal mbbers, eg, natural, SBR, or polybutadiene, being unsaturated hydrocarbons, are subjected to sulfur vulcanization, and this process requires certain ingredients in the mbber compound, besides the sulfur, eg, accelerator, zinc oxide, and stearic acid. Accelerators are catalysts that accelerate the cross-linking reaction so that reaction time drops from many hours to perhaps 20—30 min at about 130°C. There are a large number of such accelerators, mainly organic compounds, but the most popular are of the thiol or disulfide type. Zinc oxide is required to activate the accelerator by forming zinc salts. Stearic acid, or another fatty acid, helps to solubilize the zinc compounds. [Pg.467]

Vulcanization. Some of the chlorine atoms along the chain (1,2 units) are very labile and reactive, and provide excellent sites for cross-linking. Hence neoprene is not vulcanized by sulfur but by metal oxides, eg, magnesium and zinc oxides, although sulfur is generally included in the compound to control the rate of vulcanization. [Pg.470]

Polyisobutylene and isobutylene—isoprene copolymers are considered to have no chronic hazard associated with exposure under normal industrial use. Some grades can be used in chewing-gum base, and are regulated by the PDA in 21 CPR 172.615. Vulcanized products prepared from butyl mbber or halogenated butyl mbber contain small amounts of toxic materials as a result of the particular vulcanization chemistry. Although many vulcanizates are inert, eg, zinc oxide cured chlorobutyl is used extensively in pharmaceutical stoppers, specific recommendations should be sought from suppHers. [Pg.487]

Geon and Seo [47] also determined the effect of vulcanization time on the adhesion of natural rubber to brass-plated steel. For relatively short times, there was a peak at the end of the copper profile that corresponded well with a peak in the sulfur profile. Similarly, peaks in the zinc and oxygen profiles corresponded well. These results showed that copper sulfide and zinc oxide mostly formed at short times but some evidence for formation of zinc sulfide was also obtained. For long times, the peak in the sulfur profile no longer corresponded with that in the copper profile. Instead, the peak in the sulfur profile corresponded to the peak in the zinc profile. It was concluded that the formation of zinc sulfide increased substantially at long times. An increase in vulcanization time correlated well with a decrease in the force required to pull brass-plated steel wires out of rubber blocks. [Pg.295]

Resistance to weathering. Zinc oxide and magnesium oxide stabilize poly-chloroprene against dehydrochlorination. Further, zinc oxide helps vulcanize the rubber, and magnesium oxide reacts with /-butyl phenolic resin to produce a resinate which improves heat resistance of solvent-borne polychloroprene adhesives. [Pg.629]

The Goodyear vulcanization process takes hours or even days to be produced. Accelerators can be added to reduce the vulcanization time. Accelerators are derived from aniline and other amines, and the most efficient are the mercaptoben-zothiazoles, guanidines, dithiocarbamates, and thiurams (Fig. 32). Sulphenamides can also be used as accelerators for rubber vulcanization. A major change in the sulphur vulcanization was the substitution of lead oxide by zinc oxide. Zinc oxide is an activator of the accelerator system, and the amount generally added in rubber formulations is 3 to 5 phr. Fatty acids (mainly stearic acid) are also added to avoid low curing rates. Today, the cross-linking of any unsaturated rubber can be accomplished in minutes by heating rubber with sulphur, zinc oxide, a fatty acid and the appropriate accelerator. [Pg.638]

Vulcanizing latex adhesives are used in the manufacture of textiles, rugs and carpets. The vulcanizing ingredients are sulphur, zinc oxide and accelerators (for example, zinc dibutyldithiocarbamate and zinc mercaptobenzothiazole to produce vulcanization at room temperature). [Pg.650]

The product is a random polymer that is vulcanized with sulfur or with metal oxides (zinc oxide, magnesium oxide etc.). Vulcanization with sulfur is very slow, and an accelerator is usually required. [Pg.356]

Initially, vulcanization was accomplished by heating elemental sulfur at a concentration of 8 parts per 100 parts of rubber (phr) for 5 h at 140°C. The addition of zinc oxide reduced the time to 3 h. Accelerator in concentrations as low as 0.5 phr have since reduced time to 1-3 min. As a result, elastomer vulcanization by sulfur without accelerator is no longer of commercial significance. An exception is the use of about 30 or more phr of sulfur, with httle or no accelerator, to produce molded products of hard mbber called ebonite. [Pg.416]

Chlorobutadiene or chloroprene rubbers (CRs), also called neoprene rubbers, are usually vulcanized by the action of metal oxides. The cross-linking agent is usually zinc oxide in combination with magnesium oxide [27]. CR can be vulcanized in the presence of zinc oxide alone, but magnesium... [Pg.430]

Zinc oxide is the most important zinc compound. The principal industrial use of zinc oxide is as a catalyst to shorten the time of vulcanization in the production of mbber. The compound also is used as a white pigment in paints, cosmetics, and photocopy paper, hi everyday life, ZnO is also a common sunscreen. [Pg.1478]

The vulcanization recipe wasi EPDM 100, stearic acid 1.0, zinc oxide 5 0, accelerator M 0.5, TMTD 1.5, HAF 50, sulfur 1.5 phr. Peroxide-curing of E-P copolymers was carried out with a modified procedure of (6) EPR 100, dicumyl peroxide 3, zinc oxide 3, TMTD 0.5, HAF 50, sulfur 0.2 phr, the mixture being masticated for 20 minutes at 0-50°C and cured at lb0°G. [Pg.196]

Despite of 150-year s history of vulcanization process, it is impossible to consider that fundamental and applied researches in direction of vulcanization systems perfection are completed. For today one of the ways of rubbers properties improvement is the synthesis and application of the new chemicals-additives, including, vulcanization active, that is connected, first of all, with reduction of global stocks of zinc ores as basic raw material for reception of traditional activator - zinc oxide. Besides, modem increase of industrial potential and the accumulation of big quantity wastes derivate the problems of ecological character, which require the emergency decision. Therefore creation of resourcesaving technologies of the new compounds reception from products of secondary raw material processing has paramount importance. [Pg.190]

The influence of ZnCFO concentration (3,0 5,0 7,0 phr) on formation of properties complex of the unfilled rubber mixes and their vulcanizates on the basis of isoprene rubber of the following recipe, phr isoprene rubber - 100,0 sulfur - 1,0 di - (2-benzothiazolyl) -disulfide - 0,6 N, N -diphenylguanidine - 3,0 stearic acid - 1,0, was carried out in comparison with the known activator - zinc oxide (5,0 phr). The analysis of Rheometer data of sulfur vulcanization process of elastomeric compositions at 155°C (fig. 5) shows, that on crosslink density and cure rate, about what the constants of speed in the main period (k2) testify, they surpass the control composition with 5,0 phr of zinc oxide. Improvement of the complex of elastic - strong parameters of rubbers with ZnCFO as at normal test conditions, and after thermal air aging (tab. 1), probably, is caused by influence of the new activator on vulcanization network character. So, the percent part of polysulfide bonds (C-Sx-C) and amount of sulfur atoms appropriating to one crosslink (S atoms/crosslink) in vulcanizates with ZnCFO are decreased, the percent part of disulfide bonds (C-S2-C) is increased (fig. 62). [Pg.194]

That is, the analysis of the received results, has shown an opportunity of equal-mass replacement of the traditional activator - zinc oxide on the new polymer - inorganic composite (5,0 phr) at maintenance of a high activation level of sulfur vulcanization process of rubber mixes on the basis of diene isoprene rubber and improvement of the physical-mechanical properties complex of their vulcanizates. [Pg.196]

It is known, that zinc oxide is not only activator of sulfur vulcanization of diene... [Pg.197]

Influence of the ZnCFO contents (3,0 5,0 7,0 phr) on crosslink kinetics of the modelling unfilled rubber mixes from NBR-26 of sulfur, thiuram and peroxide vulcanization of recipe, phr NBR-26 - 100,0 sulfur - 1,5 2-mercaptobenzthiazole - 0,8 stearic acid - 1,5 tetramethylthiuramdisulfide - 3,0 peroximon F-40 - 3,0, is possible to estimate on the data of fig. 7. As it is shown, the increase of ZnCFO concentration results in increase of the maximum torque and, accordingly, crosslink degree of elastomeric compositions, decrease of optimum cure time, that, in turn, causes increase of cure rate, confirmed by counted constants of speed in the main period (k2). The analysis of vulcanizates physical-mechanical properties testifies, that with the increase of ZnCFO contents increase the tensile strength, hardness, resilience elongation at break and residual deformation at compression on 20 %. That is, ZnCFO is effective component of given vulcanization systems, as at equal-mass replacement of known zinc oxide (5,0 phr) the cure rate, the concentration of crosslink bonds are increased and general properties complex of rubber mixes and their vulcanizates is improved. [Pg.197]

The comparative estimation of efficiency of zinc oxide and ZnCFO similar concentrations (3,0 5,0 7,0 phr) as the agents of metaloxide vulcanization system was carried out on example of modelling unfilled elastomeric compositions from chloroprene rubber of recipe, phr chloroprene rubber - 100,0 magnesium oxide - 7,0. Kinetic curves of rubber mixes curing process at 155°C are shown on fig. 8. The analysis of the submitted data testifies, that at increase of zinc oxide contents vulcanization kinetics is changed as follows the scorch time and optimum cure time are decreased, the cure rate is increase. Vulcanization... [Pg.197]

Thus, from the analysis of results of experimental researches on estimation of ZnCFO vulcanization activity in comparison with zinc oxide in structure of various vulcanization systems (VS) follows, that its efficiency decreases in line (fig. 10) ... [Pg.199]

These steps are typical for most of the synthetic elastomers. The use of sulfur for vulcanization is common for the production of most elastomers. Magnesium and zinc oxides are often used for the cross-linking of polychloroprene (CR). Saturated materials such as EPM and fluoroelastomers are cross-linked using typical organic cross-linking agents such as peroxides. [Pg.556]


See other pages where Zinc oxide vulcanization is mentioned: [Pg.221]    [Pg.221]    [Pg.369]    [Pg.226]    [Pg.253]    [Pg.259]    [Pg.423]    [Pg.469]    [Pg.293]    [Pg.651]    [Pg.444]    [Pg.112]    [Pg.312]    [Pg.312]    [Pg.317]    [Pg.762]    [Pg.1049]    [Pg.1058]    [Pg.1058]    [Pg.27]    [Pg.198]    [Pg.198]    [Pg.200]    [Pg.9]    [Pg.740]    [Pg.482]   
See also in sourсe #XX -- [ Pg.327 ]




SEARCH



Vulcan

Vulcanization

Vulcanize

Vulcanized

Vulcanizing

© 2024 chempedia.info