Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper® sulfide

Selenium is found in a few rare minerals such as crooksite and clausthalite. In years past it has been obtained from flue dusts remaining from processing copper sulfide ores, but the anode metal from electrolytic copper refineries now provide the source of most of the world s selenium. Selenium is recovered by roasting the muds with soda or sulfuric acid, or by smelting them with soda and niter. [Pg.96]

Rhenium does not occur free in nature or as a compound in a distinct mineral species. It is, however, widely spread throughout the earth s crust to the extent of about 0.001 ppm. Commercial rhenium in the U.S. today is obtained from molybdenum roaster-flue dusts obtained from copper-sulfide ores mined in the vicinity of Miami, Arizona, and elsewhere in Arizona and Utah. [Pg.134]

Electrically Conducting Fibers. FlectricaHy conducting fibers are useful in blends with fibers of other types to achieve antistatic properties in apparel fabrics and carpets. The process developed by Nippon Sanmo Dyeing Co., for example, is reportedly used by Asahi in Casbmilon 2.2 dtex (2 den) staple fibers. Courtaulds claims a flame-resistant electrically conductive fiber produced by reaction with guanadine and treatment with copper sulfide (97). [Pg.285]

Another ak pollutant that can have very serious effects is hydrogen sulfide, which is largely responsible for the tarnishing of silver, but also has played a destmctive role in the discoloration of the natural patinas on ancient bronzes through the formation of copper sulfide. Moreover, a special vulnerabihty is created when two metals are in contact. The electromotive force can result in an accelerated corrosion, eg, in bronzes having kon mounting pins. [Pg.425]

Copper is frequently a main impurity ia blast-furnace charges, and its limited solubiUty ia molten lead as copper sulfide requires that the excess be removed by chemical reaction with components of the charge. For this reason enough sulfur is left ia the siater to form a copper sulfide matte layer having a specific gravity of 5.2. [Pg.36]

Precipitation can also occur upon chemical reaction between the impurity and a precipitating agent to form a compound insoluble in the molten metal. The refining of cmde lead is an example of this process. Most copper is removed as a copper dross upon cooling of the molten metal, but the removal of the residual copper is achieved by adding sulfur to precipitate copper sulfide. The precious metals are separated by adding zinc to Hquid lead to form soHd intermetaHic compounds of zinc with gold and silver (Parkes process). The precious metals can then be recovered by further treatment (see Lead). [Pg.169]

Oxidi ng Solutions. In many leaching processes the mineral must be oxidized, as for instance, in the leaching of copper sulfides by ferric sulfate or ferric chloride solutions. [Pg.170]

The removal of copper from the pregnant nickel solution in the Sherritt-Gordon process is an example of purification by precipitation of a fairly insoluble compound. First, in the copper boil step, ammonia is driven off by heating the solution, and some copper sulfide precipitates. The residual copper is removed by a dding hydrogen sulfide for the chemical precipitation of mote copper sulfide. [Pg.171]

Sulfide collectors ia geaeral show Htfle affinity for nonsulfide minerals, thus separation of one sulfide from another becomes the main issue. The nonsulfide collectors are in general less selective and this is accentuated by the large similarities in surface properties between the various nonsulfide minerals (42). Some examples of sulfide flotation are copper sulfides flotation from siUceous gangue sequential flotation of sulfides of copper, lead, and zinc from complex and massive sulfide ores and flotation recovery of extremely small (a few ppm) amounts of precious metals. Examples of nonsulfide flotation include separation of sylvite, KCl, from haUte, NaCl, which are two soluble minerals having similar properties selective flocculation—flotation separation of iron oxides from siUca separation of feldspar from siUca, siUcates, and oxides phosphate rock separation from siUca and carbonates and coal flotation. [Pg.412]

The matte can be treated in different ways, depending on the copper content and on the desired product. In some cases, the copper content of the Bessemer matte is low enough to allow the material to be cast directly into sulfide anodes for electrolytic refining. Usually it is necessary first to separate the nickel and copper sulfides. The copper—nickel matte is cooled slowly for ca 4 d to faciUtate grain growth of mineral crystals of copper sulfide, nickel—sulfide, and a nickel—copper alloy. This matte is pulverized, the nickel and copper sulfides isolated by flotation, and the alloy extracted magnetically and refined electrolyticaHy. The nickel sulfide is cast into anodes for electrolysis or, more commonly, is roasted to nickel oxide and further reduced to metal for refining by electrolysis or by the carbonyl method. Alternatively, the nickel sulfide may be roasted to provide a nickel oxide sinter that is suitable for direct use by the steel industry. [Pg.3]

Four different types of junctions can be used to separate the charge carriers in solar cebs (/) a homojunction joins semiconductor materials of the same substance, eg, the homojunction of a p—n sibcon solar ceb separates two oppositely doped layers of sibcon 2) a heterojunction is formed between two dissimbar semiconductor substances, eg, copper sulfide, Cu S, and cadmium sulfide, CdS, in Cu S—CdS solar cebs (J) a Schottky junction is formed when a metal and semiconductor material are joined and (4) in a metal—insulator—semiconductor junction (MIS), a thin insulator layer, generaby less than 0.003-p.m thick, is sandwiched between a metal and semiconductor material. [Pg.467]

Copper Sulfide—Cadmium Sulfide. This thin-film solar cell was used in early aerospace experiments dating back to 1955. The Cu S band gap is ca 1.2 eV. Various methods of fabricating thin-film solar cells from Cu S/CdS materials exist. The most common method is based on a simple process of serially overcoating a metal substrate, eg, copper (16). The substrate first is coated with zinc which serves as an ohmic contact between the copper and a 30-p.m thick, vapor-deposited layer of polycrystaUine CdS. A layer is then formed on the CdS base by dipping the unit into hot cuprous chloride, followed by heat-treating it in air. A heterojunction then exists between the CdS and Cu S layers. [Pg.472]

Bonding Agents. These materials are generally only used in wire cable coat compounds. They are basically organic complexes of cobalt and cobalt—boron. In wire coat compounds they are used at very low levels of active cobalt to aid in the copper sulfide complex formation that is the primary adherance stmcture. The copper sulfide stmcture builds up at the brass mbber interface through copper in the brass and sulfur from the compound. The dendrites of copper sulfide formed entrap the polymer chains before the compound is vulcanized thus hoi ding the mbber firmly to the wire. [Pg.251]

Another process, which also generates elemental sulfur as a by-product, has been patented by Envirotech Research Center in Salt Lake City (29). In the Electroslurry process, a ball mill finely grinds a chalcopyrite concentrate, which reacts with an acidic copper sulfate solution for iron removal. The Hquor is electrolyzed and the iron is oxidized to the ferric form. This latter step leaches copper from the copper sulfide for deposition on the cathode. Elemental sulfur is recovered at the same time. [Pg.120]

A pressure leaching system to handle copper sulfide called the Sherritt-Cominco (SC) copper process was developed by these two Canadian firms. Pilot-plant testing was completed in 1976 (29), but commercial appHcation of this technology has not been achieved. [Pg.120]

In metallurgy, hydrogen sulfide is used to precipitate copper sulfide from nickel—copper-containing ore leach solutions in Alberta, Canada, or to precipitate nickel and cobalt sulfides from sulfuric acid leaching oflaterite ores in Moa Bay, Cuba (120) (see Metallurgy, extractive metallurgy). [Pg.137]

Adhesives in the Tire Industry. Cobalt salts are used to improve the adhesion of mbber to steel. The steel cord must be coated with a layer of brass. During the vulcanization of the mbber, sulfur species react with the copper and zinc in the brass and the process of copper sulfide formation helps to bond the steel to the mbber. This adhesion may be further improved by the incorporation of cobalt soaps into the mbber prior to vulcanization (53,54) (see Tire cords). [Pg.382]

Copper ore minerals maybe classified as primary, secondary, oxidized, and native copper. Primaryrninerals were concentrated in ore bodies by hydrothermal processes secondary minerals formed when copper sulfide deposits exposed at the surface were leached by weathering and groundwater, and the copper reprecipitated near the water table (see Metallurgy, extractive). The important copper minerals are Hsted in Table 1. Of the sulfide ores, bornite, chalcopyrite, and tetrahedrite—teimantite are primary minerals and coveUite, chalcocite, and digenite are more commonly secondary minerals. The oxide minerals, such as chrysocoUa, malachite, and azurite, were formed by oxidation of surface sulfides. Native copper is usually found in the oxidized zone. However, the principal native copper deposits in Michigan are considered primary (5). [Pg.192]

Molybdenite [1309-56 ] M0S2, normally floats with the copper sulfides. Therefore, the copper concentrate from the cleaner cells frequently has to be separated from molybdenite in a separate flotation circuit before the copper concentrate goes to the smelter. Gold, silver, selenium, and tellurium are collected with the copper concentrate. [Pg.197]

Furthermore, sulfur combines with copper rather than with iron. Hence, copper sulfide remains ia the converter after the iron has been oxidized and has combiaed with siUca to be skimmed off as a slag. Typical converting reactions of iron sulfide are equations 11, 14, and 15. [Pg.198]

For operations producing 30,000 tons or less of copper annuaHy, hydrometaHurgy offers an alternative to smelting that avoids problems associated with sulfur dioxide recovery and environmental controls. Techniques include the Anaconda oxygen—ammonia leaching process, the Lake Shore roast-leach-electrowin process, and ferric chloride leaching processes for the treatment of copper sulfides. AH the facHities that use these techniques encountered serious technical problems and were shut down within a few years of start-up. [Pg.205]

However, when the vulcanization temperature was increased to 190°C, it was observed that the peaks in the copper and sulfur profiles no longer coincided. Instead, the peak in the sulfur profile coincided with the peaks in the zinc and oxygen profiles. These results indicated that at higher vulcanizing temperatures, zinc sulfide formed in abundance while formation of copper sulfide decreased. [Pg.295]

Geon and Seo [47] also determined the effect of vulcanization time on the adhesion of natural rubber to brass-plated steel. For relatively short times, there was a peak at the end of the copper profile that corresponded well with a peak in the sulfur profile. Similarly, peaks in the zinc and oxygen profiles corresponded well. These results showed that copper sulfide and zinc oxide mostly formed at short times but some evidence for formation of zinc sulfide was also obtained. For long times, the peak in the sulfur profile no longer corresponded with that in the copper profile. Instead, the peak in the sulfur profile corresponded to the peak in the zinc profile. It was concluded that the formation of zinc sulfide increased substantially at long times. An increase in vulcanization time correlated well with a decrease in the force required to pull brass-plated steel wires out of rubber blocks. [Pg.295]

Ruthenium and osmium are generally found in the metallic state along with the other platinum metals and the coinage metals. The major source of the platinum metals are the nickel-copper sulfide ores found in South Africa and Sudbury (Canada), and in the river sands of the Urals in Russia. They are rare elements, ruthenium particularly so, their estimated abundances in the earth s crustal rocks being but O.OOOl (Ru) and 0.005 (Os) ppm. However, as in Group 7, there is a marked contrast between the abundances of the two heavier elements and that of the first. [Pg.1071]

More than 200 ores are known to contain cobalt but only a few are of commercial value. The more important are arsenides and sulfides such as smaltite, C0AS2, cobaltite (or cobalt glance), CoAsS, and linnaeite, C03S4. These are invariably associated with nickel, and often also with copper and lead, and it is usually obtained as a byproduct or coproduct in the recovery of these metals. The world s major sources of cobalt are the African continent and Canada with smaller reserves in Australia and the former USSR. All the platinum metals are generally associated with each other and rhodium and iridium therefore occur wherever the other platinum metals are found. However, the relative proportions of the individual metals are by no means constant and the more important sources of rhodium are the nickel-copper-sulfide ores found in South Africa and in Sudbury, Canada, which contain about 0.1% Rh. Iridium is usually obtained from native osmiridium (Ir 50%) or iridiosmium (Ir 70%) found chiefiy in Alaska as well as South Africa. [Pg.1114]

Heretofore, no economical method for preparing pure phytic acid was known. The classical method was to dissolve calcium phytate in an acid such as hydrochloric acid, and then add a solution of a copper salt, such as copper sulfate to precipitate copper phytate. The latter was suspended in water and treated with hydrogen sulfide, which formed insoluble copper sulfide and released phytic acid to the solution. After removing the copper sulfide by filtration, the filtrate was concentrated to yield phytic acid as a syrup. [Pg.1228]

Write a balanced equation to represent the roasting of copper sulfide to form blister copper. ... [Pg.552]

A.4 Identify all the chemical properties and changes in the following statement Copper is a red-brown element obtained from copper sulfide ores by heating them in air, which forms copper oxide. Heating the copper oxide with carbon produces impure copper, which is purified by electrolysis. ... [Pg.38]


See other pages where Copper® sulfide is mentioned: [Pg.102]    [Pg.56]    [Pg.252]    [Pg.252]    [Pg.46]    [Pg.162]    [Pg.171]    [Pg.411]    [Pg.166]    [Pg.250]    [Pg.130]    [Pg.383]    [Pg.371]    [Pg.199]    [Pg.1809]    [Pg.293]    [Pg.130]    [Pg.263]    [Pg.1146]    [Pg.266]    [Pg.266]    [Pg.401]    [Pg.772]   
See also in sourсe #XX -- [ Pg.199 , Pg.497 ]

See also in sourсe #XX -- [ Pg.109 ]

See also in sourсe #XX -- [ Pg.4 , Pg.277 , Pg.278 ]

See also in sourсe #XX -- [ Pg.116 ]

See also in sourсe #XX -- [ Pg.109 ]

See also in sourсe #XX -- [ Pg.582 ]

See also in sourсe #XX -- [ Pg.359 , Pg.420 ]

See also in sourсe #XX -- [ Pg.626 ]

See also in sourсe #XX -- [ Pg.414 ]

See also in sourсe #XX -- [ Pg.182 , Pg.302 ]

See also in sourсe #XX -- [ Pg.856 , Pg.867 ]

See also in sourсe #XX -- [ Pg.2 , Pg.7 , Pg.152 , Pg.212 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.9 , Pg.14 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.9 ]

See also in sourсe #XX -- [ Pg.121 ]

See also in sourсe #XX -- [ Pg.359 , Pg.420 ]

See also in sourсe #XX -- [ Pg.13 , Pg.153 , Pg.180 , Pg.194 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.906 ]

See also in sourсe #XX -- [ Pg.102 ]

See also in sourсe #XX -- [ Pg.139 ]

See also in sourсe #XX -- [ Pg.626 ]

See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.287 ]

See also in sourсe #XX -- [ Pg.89 ]

See also in sourсe #XX -- [ Pg.127 ]

See also in sourсe #XX -- [ Pg.263 ]

See also in sourсe #XX -- [ Pg.555 ]

See also in sourсe #XX -- [ Pg.348 ]

See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.594 ]

See also in sourсe #XX -- [ Pg.784 ]

See also in sourсe #XX -- [ Pg.489 , Pg.617 ]




SEARCH



Chromium oxide, copper sulfides

Copper bromide-Dimethyl sulfide

Copper bromide-dimethyl sulfide complex

Copper complexes organic sulfides

Copper complexes sulfides

Copper indium sulfide

Copper indium sulfide films

Copper iodide-Dimethyl sulfide

Copper sulfide electrodes

Copper sulfide flotation concentrates

Copper sulfide flotation concentrates leaching

Copper sulfide particles

Copper sulfide precursor

Copper sulfide waste dumps, leaching

Copper sulfide, decomposition

Copper sulfide, roasting

Copper sulfide-selenide solid solutions

Copper sulfides band structures

Copper sulfides bornite

Copper sulfides qualitative

Copper — sulfide cluster

Copper, arsenite sulfids

PREPARATIVE HAZARDS Aluminium copper sulfide

Sulfide copper production

Sulfur/sulfide-oxidizing copper

© 2024 chempedia.info