Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zinc oxide active forms

Zinc oxide is a common activator in mbber formulations. It reacts during vulcanization with most accelerators to form the highly active zinc salt. A preceding reaction with stearic acid forms the hydrocarbon-soluble zinc stearate and Hberates water before the onset of cross-linking (6). In cures at atmospheric pressure, such as continuous extmsions, the prereacted zinc stearate can be used to avoid the evolution of water that would otherwise lead to undesirable porosity. In these appHcations, calcium oxide is also added as a desiccant to remove water from all sources. [Pg.225]

Activators. Activators are chemicals that increase the rate of vulcanization by reacting first with the accelerators to form mbber soluble complexes. These complexes then react with the sulfur to achieve vulcanization. The most common activators are combinations of zinc oxide and stearic acid. Other metal oxides have been used for specific purposes, ie, lead, cadmium, etc, and other fatty acids used include lauric, oleic, and propionic acids. Soluble zinc salts of fatty acid such as zinc 2-ethyIhexanoate are also used, and these mbber-soluble activators are effective in natural mbber to produce low set, low creep compounds used in load-bearing appHcations. Weak amines and amino alcohols have also been used as activators in combination with the metal oxides. [Pg.237]

Copper sulfate, in small amounts, activates the zinc dust by forming zinc—copper couples. Arsenic(III) and antimony(TTT) oxides are used to remove cobalt and nickel they activate the zinc and form intermetaUic compounds such as CoAs (49). Antimony is less toxic than arsenic and its hydride, stibine, is less stable than arsine and does not form as readily. Hydrogen, formed in the purification tanks, may give these hydrides and venting and surveillance is mandatory. The reverse antimony procedure gives a good separation of cadmium and cobalt. [Pg.403]

The principal mbbers, eg, natural, SBR, or polybutadiene, being unsaturated hydrocarbons, are subjected to sulfur vulcanization, and this process requires certain ingredients in the mbber compound, besides the sulfur, eg, accelerator, zinc oxide, and stearic acid. Accelerators are catalysts that accelerate the cross-linking reaction so that reaction time drops from many hours to perhaps 20—30 min at about 130°C. There are a large number of such accelerators, mainly organic compounds, but the most popular are of the thiol or disulfide type. Zinc oxide is required to activate the accelerator by forming zinc salts. Stearic acid, or another fatty acid, helps to solubilize the zinc compounds. [Pg.467]

Metal oxides, sulfides, and hydrides form a transition between acid/base and metal catalysts. They catalyze hydrogenation/dehydro-genation as well as many of the reactions catalyzed by acids, such as cracking and isomerization. Their oxidation activity is related to the possibility of two valence states which allow oxygen to be released and reabsorbed alternately. Common examples are oxides of cobalt, iron, zinc, and chromium and hydrides of precious metals that can release hydrogen readily. Sulfide catalysts are more resistant than metals to the formation of coke deposits and to poisoning by sulfur compounds their main application is in hydrodesulfurization. [Pg.2094]

The measures of solid state reactivity to be described include experiments on solid-gas, solid-liquid, and solid-solid chemical reaction, solid-solid structural transitions, and hot pressing-sintering in the solid state. These conditions are achieved in catalytic activity measurements of rutile and zinc oxide, in studies of the dissolution of silicon nitride and rutile, the reaction of lead oxide and zirconia to form lead zirconate, the monoclinic to tetragonal transformation in zirconia, the theta-to-alpha transformation in alumina, and the hot pressing of aluminum nitride and aluminum oxide. [Pg.161]

Two methods are available for the preparation of the powder (Smith, 1969). In one, zinc oxide is ignited at 900 to 1000 °C for 12 to 24 hours until activity is reduced to the desired level. This oxide powder is yellow, presumably because zinc is in excess of that required for stoichiometry. Alternatively, a blend of zinc oxide and magnesium oxide in the ratio of 9 1 is heated for 8 to 12 hours to form a sintered mass. This mass is ground and reheated for another 8 to 12 hours. The powder is white. Altogether the powder is similar to that used in zinc phosphate cements. [Pg.104]

Active zinc oxide is capable of forming chelate cements with a number of liquid organic chelates. These include the ) -diketones, ketoacids and ketoesters as well as the 2-methoxy phenols (Nielsen, 1963). [Pg.321]

All commercial materials are based on calcium hydroxide and liquid alkyl salicylates (Prosser, Grolfman Wilson, 1982) and are supplied as a two-paste pack. Zinc oxide is sometimes added to the calcium hydroxide, as are neutral fillers. A paste is formed from this powder by the addition of a plasticizer examples include A-ethyl toluenesulphonamide (o- orp-) and paraffin oil, with sometimes minor additions of polypropylene glycol. The other paste is based on an alkyl salicylate as the active constituent containing an inorganic filler such as titanium dioxide, calcium sulphate, calcium tungstate or barium sulphate. Alkyl salicylates used include methyl salicylate, isobutyl salicylate, and 1-methyl trimethylene disalicylate. An example of one commercial material, Dycal, is given in Table 9.7, but its composition has been subjected to change over the years. [Pg.348]

The low energy of activation of the change in electric conductivity of zinc oxide observed during adsorption of H-atoms ( 0.08 eV) [102] can correspond to the ionization energy of (0-H) -groups formed during direct interaction of H-atoms with O -ions of the lattice. [Pg.143]

To dissociate molecules in an adsorbed layer of oxide, a spillover (photospillover) phenomenon can be used with prior activation of the surface of zinc oxide by particles (clusters) of Pt, Pd, Ni, etc. In the course of adsorption of molecular gases (especially H2, O2) or more complex molecules these particles emit (generate) active particles on the surface of substrate [12], which are capable, as we have already noted, to affect considerably the impurity conductivity even at minor concentrations. Thus, the semiconductor oxide activated by cluster particles of transition metals plays a double role of both activator and analyzer (sensor). The latter conclusion is proved by a large number of papers discussed in detail in review [13]. The papers cited maintain that the particles formed during the process of activation are fairly active as to their influence on the electrical properties of sensors made of semiconductor oxides in the form of thin sintered films. [Pg.177]

In order to develop more informative and direct method of studying the spillover effect of active particles, the authors of [37] suggested to use the sensor method of detecting migrating particles based on separation of sensor and emitter (donor) of active particles. The latter consists of small metal globules, or clusters (with a diameter of about 20-30 A) of Pt, Pd, Ni, etc. (activator) deposited on quartz or sapphire (AI2O3) plate in the form of a strip less than 1 cm wide. The sensor for detection of hydrogen atoms consisted of a zinc oxide strip (with a width of about 0.1 cm and thickness wlOO nm) deposited on the same plate at a distance of 0.03 or 0.6 cm (two versions) from the inner boundaries of activator strips [38]. [Pg.245]

Metallothioneins (MT) are unique 7-kDa proteins containing 20 cysteine molecules bounded to seven zinc atoms, which form two clusters with bridging or terminal cysteine thiolates. A main function of MT is to serve as a source for the distribution of zinc in cells, and this function is connected with the MT redox activity, which is responsible for the regulation of binding and release of zinc. It has been shown that the release of zinc is stimulated by MT oxidation in the reaction with glutathione disulfide or other biological disulfides [334]. MT redox properties led to a suggestion that MT may possesses antioxidant activity. The mechanism of MT antioxidant activity is of a special interest in connection with the possible antioxidant effects of zinc. (Zinc can be substituted in MT by some other metals such as copper or cadmium, but Ca MT and Cu MT exhibit manly prooxidant activity.)... [Pg.891]

Zinc. Next to sodium, zinc is the most used reductant. It is available in powder, dust, and granular (mossy) forms. Zinc gets coated by a l er of zinc oxide which must be removed to activate it before it can reduce effectively. It can easily be activated by shaking 3 to 4 min. in a 1% to 2% hydrochloric acid solution. This means for every 98 ml of water volume, add 2 ml of coned hydrochloric acid. Then wash this solution with water, ethatiol, acetone, and ether. Ot activation can be accomplished by washing zinc in a solution of anhydrous zinc chloride (a very small amount) in ether, alcohol, or tetrahydrofuran. Another way is to stir 180 g of zinc in a solution of 1 g copper sulfate pentahydrate. Personally, I like the HCl acid method. [Pg.30]

The sirtuins (silent information regulator 2-related proteins class III HDACs) form a specific class of histone deacetylases. First, they do not share any sequence or structural homology with the other HDACs. Second, they do not require zinc for activity, but rather use the oxidized form of nicotinamide adenine dinucleotide (NAD ) as cofactor. The reaction catalyzed by these enzymes is the conversion of histones acetylated at specific lysine residues into deacetylated histones, the other products of the reaction being nicotinamide and the metabolite 2 -0-acetyl-adenosine diphosphate ribose (OAADPR) [51, 52]. As HATs and other HDACs, sirtuins not only use acetylated histones as substrates but can also deacetylate other proteins. Intriguingly, some sirtuins do not display any deacetylase activity but act as ADP-ribosyl transferases. [Pg.34]


See other pages where Zinc oxide active forms is mentioned: [Pg.53]    [Pg.740]    [Pg.393]    [Pg.393]    [Pg.555]    [Pg.740]    [Pg.388]    [Pg.587]    [Pg.152]    [Pg.253]    [Pg.259]    [Pg.421]    [Pg.422]    [Pg.423]    [Pg.444]    [Pg.762]    [Pg.121]    [Pg.142]    [Pg.171]    [Pg.240]    [Pg.276]    [Pg.331]    [Pg.335]    [Pg.341]    [Pg.276]    [Pg.15]    [Pg.16]    [Pg.37]    [Pg.46]    [Pg.304]    [Pg.132]    [Pg.417]    [Pg.113]    [Pg.195]    [Pg.291]   
See also in sourсe #XX -- [ Pg.2 , Pg.321 ]




SEARCH



Activated oxidation

Activation oxidation

Active oxides

Activity oxidation

Oxidative activation

Oxides activated

Oxidizing activators

Zinc activator

Zinc oxide activated

© 2024 chempedia.info