Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wastewater treatment, concentrate

Owing to the low limits for concentrations of chromium the proposed processes for wastewater treatment concentrate on the removal, for example, by flocculation and precipitation, but as a result chromium-containing sludge/precipitate or concentrates are obtained that need further treatment. [Pg.372]

The function of aeration in a wastewater treatment system is to maintain an aerobic condition. Water, upon exposure to air, tends to estabUsh an equihbrium concentration of dissolved oxygen (DO). Oxygen absorption is controlled by gas solubiUty and diffusion at the gas—hquid interface. Mechanical or artificial aeration may be utilised to speed up this process. Agitating the water, creating drops or a thin layer, or bubbling air through water speeds up absorption because each increases the surface area at the interface. [Pg.339]

Dissolved matter lowers oxygen solubihty. At 20°C and 101.3 kPa (1 atm), the equihbrium concentration of dissolved oxygen in seawater is 7.42 mg/L. It is 9.09 mg/L in chloride-free water and 9.17 mg/L in clean water. This lessening of oxygen solubihty is of importance to wastewater treatment. The solubihty of atmospheric oxygen in a domestic sewage is much less than in distilled water (12). [Pg.339]

Industrial Wastewater Treatment. Industrial wastewaters require different treatments depending on their sources. Plating waste contains toxic metals that are precipitated and insolubiHzed with lime (see Electroplating). Iron and other heavy metals are also precipitated from waste-pidde Hquor, which requires acid neutralization. Akin to pickle Hquor is the concentrated sulfuric acid waste, high in iron, that accumulates in smokeless powder ordinance and chemical plants. Lime is also useful in clarifying wastes from textile dyeworks and paper pulp mills and a wide variety of other wastes. Effluents from active and abandoned coal mines also have a high sulfuric acid and iron oxide content because of the presence of pyrite in coal. [Pg.178]

Wastewater Treatment Plants. Numerous studies have shown that phthalates in wastewater systems are removed to a significant extent by treatment plants. The concentration of phthalates in both domestic and industrial wastewater was measured before and after treatment (55). The total level of phthalates in domestic effluent was reduced by treatment from 32.7 to 0.92 )-lg/L and in industrial effluent from 93.6 to 1.06 )-lg/L. Thus between 97 and 99% of the phthalates are removed from wastewater by treatment plants. [Pg.132]

These data together with those from wastewater treatment plants at Darmstadt, Germany Gothenburg and Stockholm, Sweden and Noord-Brabant, the Netherlands, show that the concentrations of DEHP, and in some cases total phthalates, entering wastewater treatment plants vary from 1 to 167 )-lg/L. After treatment the concentrations range from <1 to 36.8 )-lg/L. [Pg.132]

Comparison of these environmental compartment concentrations with the actual measurements made at a variety of locations show reasonable agreement but indicate that emission estimates are rather high. It is likely that the fault Hes with worst case estimates for losses from outdoor appHcations and the washing of PVC flooring. In addition a large proportion of the phthalates lost by these routes will not enter rivers because they will be removed by wastewater treatment plants. [Pg.132]

There are two reasons why the concentration of quaternaries is beheved to remain at a low level in sewage treatment systems. First, quaternaries appear to bind anionic compounds and thus are effectively removed from wastewater by producing stable, lower toxicity compounds (205). Anionic compounds are present in sewer systems at significantly higher concentrations than are cations (202). Second, the nature of how most quaternaries are used ensures that their concentrations in wastewater treatment systems are always relatively low but steady. Consumer products such as fabric softeners, hair conditioners, and disinfectants contain only a small amount of quaternary compounds. This material is then diluted with large volumes of water during use. [Pg.379]

RO, primarily used ia the dairy iadustry, is expanding iato other areas of food processiag. RO can be used for a variety of operations, ranging from wastewater treatment and material recovery to clarification and concentration. Material recovery is advantageous for two reasons. By recovering valuable products, eg, proteias, from waste streams, profits can be iacreased while costs for waste disposal decreased. An excellent review of the different apphcations ofRO ia food processiag is available (9). [Pg.155]

Dissolved Air Flotation. Dissolved air flotation (DAF) is used to separate suspended soflds and oil and grease from aqueous streams and to concentrate or thicken sludges. Air bubbles carry or float these materials to the surface where they can be removed. The air bubbles are formed by pressurizing either the influent wastewater or a portion of the effluent in the presence of air. When the pressurized stream enters the flotation tank which is at atmospheric pressure, the dissolved air comes out of solution as tiny, microscopic bubbles. Dissolved air flotation is used in many wastewater treatment systems, but in the United States it is perhaps best known with respect to hazardous waste because it is associated with the Hsted waste, K048, DAF flotation soflds from petroleum refining wastewaters. Of course, the process itself is not what is hazardous, but the materials it helps to remove from refining wastewaters. [Pg.161]

Filtration is employed when the suspended soUds concentration is less than 100 mg/L and high effluent clarity is required. Finely dispersed suspended soUds require the addition of a coagulant prior to filtration. Filters most commonly used in wastewater treatment are a dual media (anthrafUt and sand) or a moving bed or continuous-backwash sand filter. Performance data for the tertiary filtration of municipal and industrial wastewater are shown in Table 10. [Pg.183]

Recent air pollution regulations limit the amount of volatile organic carbon (VOC) that can be discharged from wastewater treatment plants. Benzene is a particular case in which air emission controls are required if the concentration of benzene in the influent wastewater exceeds 10 mg/L. [Pg.223]

A notable example of controlled water reuse was utilization of secondary sewage effluent from the Back River Wastewater Treatment Plant in Baltimore by the Sparrows Point Works of Bethlehem Steel (6). The Sparrows Point plant was suppHed primarily by weUs located near the brackish waters of Baltimore harbor. Increased draft on the weUs had led to saltwater intmsion. Water with chloride concentration as high as 10 mg/L is unsuitable for many steelmaking operations. Rollers, for example, are pitted by such waters. However, treated effluent from the Back River Plant can be used for some operations, such as coke quenching, and >4 x 10 m /d (10 gal/d) are piped 13 km to Sparrows Point. This arrangement has proved economical to both parties for >40 yr. [Pg.291]

Pulp bleaching with chlorine dioxide is most often performed at an acidic pH, so that the final pH of the bleach Hquor is in the range of 2—5. Under these conditions, the residual concentration of chlorite and chlorate ions in the bleach Hquor are minimized and chloride ion is the predominant chlorine species in the spent bleach (77). In addition to direct addition to pulp in bleaching, chlorine dioxide also finds use in wastewater treatment from pulp mill operations as a means to remove effluent color (85). [Pg.484]

Metal ore concentrates Fine coal refuse Metal tailings Refinery sludges Wastewater treatment plant sludges Potable water treatment sludges Variable-volume filter press 46-55 81-93"... [Pg.1745]

Wastewater treatment is directed toward removal of pollutants with the least effort. Suspended sohds are removed by either physical or chemical separation techniques and handled as concentrated solids. [Pg.2214]

Tighter control of water use can reduce the volume of wastewater requiring treatment, and result in cost savings - it can sometimes reduce volumes and increase concentrations to the point of providing economic material recovery in place of costly wastewater treatment. [Pg.366]

Biological wastewater treatment processes also affect solids characteristics and hence solids separation. Activated sludge solids have been found to have a distinct bimodal distribution with one mode in the supracolloidal to settleable range and another near the border between the colloidal and supracolloidal fractions. The concentrations and size limits in each range are affected by conditions in the... [Pg.402]

Processes for SS separation may fill three distinct functions in wastewater treatment, namely, pretreatment to protect subsequent processes and reduce their loadings to required levels, treatment to reduce effluent concentrations to required standards, and separation of solids to produce concentrated recycle streams required to maintain other processes. In the first two functions effluent quality is the prime consideration, but where the third function must be fulfilled along with one of the others, design attention must be given to conditions for both the separated solids (sludge) and the process effluent. [Pg.403]

Anhydrous caustic soda (NaOH) is available but its use is generally not considered practical in water and wastewater treatment applications. Consequently, only liquid caustic soda is discussed here. Liquid caustic soda is generally shipped at two concentrations, 50 percent and 73 percent NaOH. The densities of the solutions as shipped are 12.76 Ib/gal for the 50 percent solution and 14.18 Ib/gal for the 73 percent solution. These solutions contain 6.38 Ib/gal NaOH and 10.34 Ib/gal NaOH, respectively. The crystallization temperature is 53 F for the 50 percent solution and 165 F for the 73 percent solution. The molecular weight of NaOH is 40. The pH of a 1 percent solution of caustic soda is 12.9. [Pg.105]

The first two categories, clarifying and crossflow filters, have been very well developed and optimized for use in biotechnology and standard wastewater treatment applications. Equipment is easily available for these applications, whether as small 0.2 micron sterilizing filter used to terminally sterilize 100 ml of product solution, or a small 500 ml crossflow filter used to concentrate a small amount of antibody solution. Many vendors of this equipment to wastewater treatment applications have their origins in the CPI (Chemical Process Industries), and have incorporated many of the scale-up and optimization properties developed in much larger units used in large scale chemical production. As a result, these two filtration unit operations are one of the most optimized and efficient used in wastewater treatment. [Pg.185]

The solids that result from wastewater treatment may contain concentrated levels of contaminants that were originally contained in the wastewater. A great deal of concern must be directed to the proper disposal of these solids to protect environmental considerations. Failure to do this may result in a mere shifting of the original pollutants in the waste stream to the fmal disposal site where they may again become free to contaminate the environment and possibly place the public at risk. A more reasonable approach to ultimate solids disposal is to view the sludge... [Pg.566]


See other pages where Wastewater treatment, concentrate is mentioned: [Pg.403]    [Pg.403]    [Pg.525]    [Pg.332]    [Pg.153]    [Pg.322]    [Pg.60]    [Pg.170]    [Pg.286]    [Pg.286]    [Pg.291]    [Pg.293]    [Pg.345]    [Pg.292]    [Pg.80]    [Pg.2213]    [Pg.2225]    [Pg.2230]    [Pg.96]    [Pg.277]    [Pg.326]    [Pg.84]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.330]    [Pg.479]    [Pg.484]    [Pg.573]   


SEARCH



Concentrate processing wastewater treatment

Wastewater treatment

Wastewater treatment plant concentrations

Wastewater treatment, concentrate production

© 2024 chempedia.info