Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl chloride polymers preparation

X-ray studies indicate that the vinyl chloride polymer as normally prepared in commercial processes is substantially amorphous although some small amount of crystallinity (about 5% as measured by X-ray diffraction methods) is present. It has been reported by Fuller d in 1940 and Natta and Carradini in 1956 that examination of the crystalline zones indicates a repeat distance of 5.1 A which is consistent with a syndiotactic (i.e. alternating) structure. Later studies using NMR techniques indicate that conventional PVC is about 55% syndiotactic and the rest largely atactic in structure. [Pg.319]

Would you expect vinyl chloride (H2C=CHC1), the starting material used for preparation of poly(vinyl chloride) polymer, to have a dipole moment If so, indicate the direction. [Pg.384]

Dechlorination of poly (vinyl chloride) (PVC) prepared by polymerisation of vinyl chloride (VC) with butyllithium (BuLi) was investigated under the conditions of high pressure and high temperature water. Dechlorination was induced completely and polyene product was formed from PVC under high pressure and high temperature. The polymers obtained from polymerisation of VC with the BuLi revealed different decomposition behaviour from that obtained with radical initiator such as lauryl peroxide. This was attributed to the different chemical structure of the sample PVC. Complete dechlorination of PVC could be achieved in hot water under the conditions of 19.3 MPa and 300 deg.C. 3 refs. [Pg.49]

Slush powders were prepared from mass polymerised and suspension polymerised vinyl chloride polymers and the absorption of plasticisers into the polymers was investigated using the Haake rheomix procedure. The fusion behaviour of the powders was also investigated and the morphology of the particles analysed by scanning electron microscopy. The properties of the two different powders are compared. 6 refs. [Pg.70]

Transfer to monomer is an important process in the radical polymerization of vinyl chloride so that the number of initiator fragment in a polymer chain is less than unity. For example, poly(vinyl chloride)s prepared with AIBN in 1,2-dichloroethane at 40°C were found to contain 0.17 0.34 AIBN fragments per chain from the 13C NMR analysis of the polymer reduced with Bu3SnH. The polymers also contained a CN group in the chain (0.025 0.12 per chain), suggesting the copolymerization of methacrylonitrile which was formed in situ or admitted as an impurity in the starting AIBN.79... [Pg.146]

G. Akovali, T.T. Torun, Properties of blends prepared from surface-modified low-density polyethylene and poly(vinyl chloride). Polym. Int 42, 307 (1997)... [Pg.1716]

Use of seed polymers introduces a new degree of flexibility into the kind of product that may be produced. Within wide limitations, the seed polymer can be a latex based on any monomer—not only one based on vinyl chloride. For example, the seed may be a hexyl acrylate-based polymer or copolymer that may confer internal, permanent plasticization to the vinyl chloride polymer ultimately associated with it. Furthermore, as in many of these processes, the monomer added to the seed may consist of a mixture of several monomers to yield a large variety of copolymers that have significantly different properties from copolymers prepared without the use of a seed (co)polymer. Whether the products of such procedures are graft copolymers, intertwined chains within the latex particle, mixtures of latex particles of different chemical composition, or combinations of these probably varies with each system. Investigation of the fine structure of such latex systems is difficult. Therefore the technique itself is widely used. The physical properties of the system are related to the operations involved in the preparation rather than with the overall composition and conformation of the polymer chains. [Pg.397]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

A number of methods such as ultrasonics (137), radiation (138), and chemical techniques (139—141), including the use of polymer radicals, polymer ions, and organometaUic initiators, have been used to prepare acrylonitrile block copolymers (142). Block comonomers include styrene, methyl acrylate, methyl methacrylate, vinyl chloride, vinyl acetate, 4-vinylpyridine, acryUc acid, and -butyl isocyanate. [Pg.197]

The principal chemical markets for acetylene at present are its uses in the preparation of vinyl chloride, vinyl acetate, and 1,4-butanediol. Polymers from these monomers reach the consumer in the form of surface coatings (paints, films, sheets, or textiles), containers, pipe, electrical wire insulation, adhesives, and many other products which total biUions of kg. The acetylene routes to these monomers were once dominant but have been largely displaced by newer processes based on olefinic starting materials. [Pg.393]

MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene mbber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid poly(vinyl chloride). [Pg.269]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Polymers. In combination with various metal salts, sorbitol is used as a stabilizer against heat and light in poly(vinyl chloride) (qv) resins and, with a phenohc antioxidant, as a stabilizer in uncured styrene—butadiene mbber (qv) compositions and in polyolefins (see Heat stabilizers Olefin POLYMERS Rubbercompounding). Heat-sealable films are prepared from a dispersion of sorbitol and starch in water (255). Incorporation of sorbitol in coUagen films gready restricts their permeabiUty to carbon dioxide (256). [Pg.55]

Polymer Solvent. Sulfolane is a solvent for a variety of polymers, including polyacrylonitrile (PAN), poly(vinyhdene cyanide), poly(vinyl chloride) (PVC), poly(vinyl fluoride), and polysulfones (124—129). Sulfolane solutions of PAN, poly(vinyhdene cyanide), and PVC have been patented for fiber-spinning processes, in which the relatively low solution viscosity, good thermal stabiUty, and comparatively low solvent toxicity of sulfolane are advantageous. Powdered perfluorocarbon copolymers bearing sulfo or carboxy groups have been prepared by precipitation from sulfolane solution with toluene at temperatures below 300°C. Particle sizes of 0.5—100 p.m result. [Pg.70]

Membrane stmcture is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc). Commonly used polymers include cellulose acetates, polyamides, polysulfones, dynels (vinyl chloride-acrylonitrile copolymers) and poly(vinyhdene fluoride). [Pg.294]

The poly(vinyl acetal) prepared from acetaldehyde was developed in the early 1940s by Shawinigan Chemicals, Ltd., of Canada and sold under the trade name Alvar. Early uses included injection-molded articles, coatings for paper and textiles, and replacement for shellac. Production peaked in the early 1950s and then decreased as a result of competition from less expensive resins such as poly(vinyl chloride) (see Vinyl polymers, poly(vinyl chloride)). [Pg.449]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Poly(vinyl chloride). Poly(vinyl chloride) (PVC) [9002-86-2] is a thermoplastic for building products. It is prepared by either the bulk or the suspension polymerization process. In each process residual monomer is removed because it is carcinogenic. Oxygen must be avoided throughout the process (see Vinyl polymers). [Pg.327]

Polymers ndResins. / fZ-Butyl peroxyneopentanoate and other peroxyesters of neopentanoic acid can be used as free-radical initiators for the polymeri2ation of vinyl chloride [75-01-4] (38) or of ethylene [74-85-1]. These peresters have also been used in the preparation of ethylene—vinyl acetate copolymers [24937-78-8] (39), modified polyester granules (40), graft polymers of arninoalkyl acrylates with vinyl chloride resins (41), and copolymers of A/-vinyl-pyrrohdinone [88-12-0] and vinyl acetate [108-05-4] (42). They can also be used as curing agents for unsaturated polyesters (43). [Pg.104]

Diesters. Many of the diester derivatives are commercially important. The diesters are important plasticizers, polymer intermediates, and synthetic lubricants. The diesters of azelaic and sebacic acids are useflil as monomeric plasticizing agents these perform weU at low temperatures and are less water-soluble and less volatile than are diesters of adipic acid. Azelate diesters, eg, di- -hexyl, di(2-ethylhexyl), and dibutyl, are useflil plasticizing agents for poly(vinyl chloride), synthetic mbbers, nitroceUulose, and other derivatized ceUuloses (104). The di-hexyl azelates and dibutyl sebacate are sanctioned by the U.S. Food and Dmg Administration for use in poly(vinyl chloride) films and in other plastics with direct contact to food. The di(2-ethylhexyl) and dibenzyl sebacates are also valuable plasticizers. Monomeric plasticizers have also been prepared from other diacids, notably dodecanedioic, brassyflc, and 8-eth5lhexadecanedioic (88), but these have not enjoyed the commercialization of the sebacic and azelaic diesters. [Pg.64]

As with poly(vinyl alcohol), poly(vinyl cinnamate) is prepared by chemical modification of another polymer rather than from monomer . One process is to treat poly(vinyl alcohol) with cinnamoyl chloride and pyridine but this is rather slow. Use of the Schotten Baumann reaction will, however, allow esterification to proceed at a reasonable rate. In one example poly(vinyl alcohol) of degree of polymerisation 1400 and degree of saponification of 95% was dissolved in water. To this was added a concentrated potassium hydroxide solution and then cinnamoyl chloride in methyl ethyl ketone. The product was, in effect a vinyl alcohol-vinyl cinnamate copolymer Figure 14.8)... [Pg.396]

The polymer may be prepared readily in bulk, emulsion and suspension, the latter technique apparently being preferred on an industrial scale. The monomer must be free from oxygen and metallic impurities. Peroxide such as benzoyl peroxide are used in suspension polymerisations which may be carried out at room temperature or at slightly elevated temperatures. Persulphate initiators and the conventional emulsifying soaps may be used in emulsion polymerisation. The polymerisation rate for vinylidene chloride-vinyl chloride copolymers is markedly less than for either monomer polymerised alone. [Pg.467]

An alkyne is a hydrocarbon that contains a carbon-carbon triple bond. Acetylene.. H—C= C—H, the simplest alkyne, was once widely used in industry as the starting material for the preparation of acetaldehyde, acetic acid, vinyl chloride, and other high-volume chemicals, but more efficient routes to these substances using ethylene as starting material are now available. Acetylene is still used in the preparation of acrylic polymers but is probably best known as the gas burned in high-temperature oxy-acetylene welding torches. [Pg.259]

The small molecules used as the basic building blocks for these large molecules are known as monomers. For example the commercially important material poly(vinyl chloride) is made from the monomer vinyl chloride. The repeat unit in the polymer usually corresponds to the monomer from which the polymer was made. There are exceptions to this, though. Poly(vinyl alcohol) is formally considered to be made up of vinyl alcohol (CH2CHOH) repeat units but there is, in fact, no such monomer as vinyl alcohol. The appropriate molecular unit exists in the alternative tautomeric form, ethanal CH3CHO. To make this polymer, it is necessary first to prepare poly(vinyl ethanoate) from the monomer vinyl ethanoate, and then to hydrolyse the product to yield the polymeric alcohol. [Pg.1]


See other pages where Vinyl chloride polymers preparation is mentioned: [Pg.335]    [Pg.717]    [Pg.289]    [Pg.87]    [Pg.3760]    [Pg.99]    [Pg.12]    [Pg.93]    [Pg.420]    [Pg.400]    [Pg.514]    [Pg.254]    [Pg.312]    [Pg.55]    [Pg.439]    [Pg.440]    [Pg.327]    [Pg.8]    [Pg.44]    [Pg.334]    [Pg.334]    [Pg.160]   
See also in sourсe #XX -- [ Pg.15 , Pg.313 ]




SEARCH



Chlorides, preparation

Polymer preparation

Polymer vinyl

Preparation vinyl

Vinyl chloride

Vinyl chloride polymers

Vinylic chlorides

Vinylic polymers

© 2024 chempedia.info