Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxies electrical conduction

For many electronic and electrical appHcations, electrically conductive resias are required. Most polymeric resias exhibit high levels of electrical resistivity. Conductivity can be improved, however, by the judicious use of fillers eg, in epoxy, silver (in either flake or powdered form) is used as a filler. Sometimes other fillers such as copper are also used, but result in reduced efficiency. The popularity of silver is due to the absence of the oxide layer formation, which imparts electrical insulating characteristics. Consequently, metallic fibers such as aluminum are rarely considered for this appHcation. [Pg.531]

Another important use of BCl is as a Ftiedel-Crafts catalyst ia various polymerisation, alkylation, and acylation reactions, and ia other organic syntheses (see Friedel-Crafts reaction). Examples include conversion of cyclophosphasenes to polymers (81,82) polymerisation of olefins such as ethylene (75,83—88) graft polymerisation of vinyl chloride and isobutylene (89) stereospecific polymerisation of propylene (90) copolymerisation of isobutylene and styrene (91,92), and other unsaturated aromatics with maleic anhydride (93) polymerisation of norhornene (94), butadiene (95) preparation of electrically conducting epoxy resins (96), and polymers containing B and N (97) and selective demethylation of methoxy groups ortho to OH groups (98). [Pg.224]

Epoxy, polyester, phenolic and other resins are used as coatings and linings with or without reinforcement. Glass fiber, silica, carbon and many other materials can be used as filters or reinforcement to produce materials with specific properties of strength, flexibility, wear resistance and electrical conductivity. [Pg.907]

In a study of dental silicate cements, Kent, Fletcher Wilson (1970) used electron probe analysis to study the fully set material. Their method of sample preparation varied slightly from the general one described above, in that they embedded their set cement in epoxy resin, polished the surface to flatness, and then coated it with a 2-nm carbon layer to provide electrical conductivity. They analysed the various areas of the cement for calcium, silicon, aluminium and phosphorus, and found that the cement comprised a matrix containing phosphorus, aluminium and calcium, but not silicon. The aluminosilicate glass was assumed to develop into a gel which was relatively depleted in calcium. [Pg.369]

Polyvinyl chloride has been modified by photochemical reactions in order to either produce a conductive polymer or to improve its light-stability. In the first case, the PVC plate was extensively photochlorinated and then degraded by UV exposure in N2. Total dehydrochlorination was achieved by a short Ar+ laser irradiation at 488 nm that leads to a purely carbon polymer which was shown to exhibit an electrical conductivity. In the second case, an epoxy-acrylate resin was coated onto a transparent PVC sheet and crosslinked by UV irradiation in the presence of both a photoinitiator and a UV absorber. This superficial treatment was found to greatly improve the photostability of PVC as well as its surface properties. [Pg.201]

Alignment of CNTs markedly affects the electrical properties of polymer/CNT composites. For example, the nanocomposites of epoxy/MWCNTs with MWCNTs aligned under a 25 T magnetic field leads to a 35% increase in electric conductivity compared to those similar composites without magnetic aligned CNTs (Kilbride et al., 2002). Improvements on the dispersion and alignment of CNTs in a polymer matrix could markedly decrease the percolation threshold value. [Pg.197]

The incorporation of nanocarbons in hierarchical composites can also result in large improvements in their electrical conductivity, and to a lesser extent in their thermal conductivity. For ceramic fibers both in-plane and out-of-plane electrical conductivities are increased by several orders of magnitude [41], whereas for CF the improvement is significant only perpendicular to the fiber direction due to the already high conductivity of the fiber itself [46]. The out-of-plane electrical conductivity of CNT/CF/epoxy composites is approaching the requirements for lightning strike protection in aerospace composites, thought to be around 1 10 S/m. Yet further improvements are required, as well as the evaluation of other composite properties relevant for this application, such as maximum current density and thermal conductivity. [Pg.238]

As can be seen from Fig. 12, the experiment is very well described by Eq. (35). Finally, measurements of the electric conductivity of the binary mixtures of the initial reagents have played an important role in substantiating Scheme (35) 149-152>. The electric conductivity of any binary mixture of the initial reagents (epoxy compounds, TA and alcohol) turned out to be over two orders of magnitude lower than that of the triple system. These experiments show that the interaction of all three reagents is essential for generation of the ionic particles. They have also completely rejected the possibility of formation of active sites directly via interaction of TA with alcohol139,... [Pg.151]

While we have not yet carried out detailed kinetic measurements on the rate of photocorrosion, our impression is that the process is relatively insensitive to the specific composition of the strontium titanate. Trace element compositions, obtained by spark-source mass spectrometry, are presented in Table I for the four boules of n-SrTi03 from which electrodes have been cut. Photocorrosion has been observed in samples from all four boules. In all cases, the electrodes were cut to a thickness of 1-2 mm using a diamond saw, reduced under H2 at 800-1000 C for up to 16 hours, polished with a diamond paste cloth, and etched with either hot concentrated nitric acid or hot aqua regia. Ohmic contacts were then made with gallium-indium eutectic alloy, and a wire was attached using electrically conductive silver epoxy prior to mounting the electrode on a Pyrex support tube with either epoxy cement or heat-shrinkable Teflon tubing. [Pg.193]

Additions of BN powder to epoxies, urethanes, silicones, and other polymers are ideal for potting compounds. BN increases the thermal conductivity and reduces thermal expansion and makes the composites electrically insulating while not abrading delicate electronic parts and interconnections. BN additions reduce surface and dynamic friction of rubber parts. In epoxy resins, or generally resins, it is used to adjust the electrical conductivity, dielectric loss behavior, and thermal conductivity, to create ideal thermal and electrical behavior of the materials [146]. [Pg.22]

Incorporation or enhancement of specific properties in either the uncured (e.g., thixotropy, cure rate) and/or cured epoxy system (e.g., electrical conductivity, chemical resistance)... [Pg.6]

Modification of cotton textiles by chemical plating of their surfaces with cobalt (II) or nickel (II) salts produced metallized fibers and fabrics with high electrical conductivity and the capability to transport and dissipate thermal energy (109). The heat capacity of cellulose acetate fibers was increased by treatment with epoxy compounds (110). [Pg.272]

Prior to analysis, the FCC catalyst samples were embedded in copper doped thermosetting epoxy to provide increased electrical conductivity. They were dry polished with silicon carbide to approximate cross-sections. [Pg.358]

Reinforcement of epoxy, polyester, and other resins for use in aerospace, marine, automotive and sports industries. We have previously mentioned the vibration damping capacity of Kevlar aramid fiber. Layers of woven Kevlar are used in skis for damping purposes and, of course, to reduce the weight. Kevlar is used as a protective sheath in fiber optic wave guides and to reinforce optical fiber cables because of its high tensile modulus and strength, and low electrical conductivity. [Pg.103]

Epoxies are excellent electrical insulators. Electrical properties are reduced on increasing the polarity of the molecules. Addition of metallic fillers, metallic wools and carbon black convert the non-conductive epoxy formulation into an electrically conductive system. Non-conductive fillers increase the arc resistance and to some extent increase the dielectric constant. [Pg.63]


See other pages where Epoxies electrical conduction is mentioned: [Pg.659]    [Pg.659]    [Pg.45]    [Pg.158]    [Pg.359]    [Pg.391]    [Pg.633]    [Pg.60]    [Pg.148]    [Pg.246]    [Pg.179]    [Pg.119]    [Pg.236]    [Pg.238]    [Pg.320]    [Pg.530]    [Pg.718]    [Pg.45]    [Pg.188]    [Pg.530]    [Pg.275]    [Pg.10]    [Pg.158]    [Pg.211]    [Pg.299]    [Pg.272]    [Pg.37]    [Pg.87]    [Pg.333]    [Pg.182]    [Pg.431]    [Pg.165]    [Pg.142]   
See also in sourсe #XX -- [ Pg.61 ]




SEARCH



Conductive epoxy

Epoxies electrically conductive adhesives

Epoxy electrical

© 2024 chempedia.info