Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rigid poly

Poly(vinylchloride). Cellular poly(vinyl chloride) can be produced from several expandable formulations as well as by decompression techniques. Rigid or flexible products can be made depending on the amount and type of plasticizer used (43). [Pg.405]

Fig. 3. Effect of density on compressive modulus of rigid cellular polymers. A, extmded polystyrene (131) B, expanded polystyrene (150) C-1, C-2, polyether polyurethane (151) D, phenol—formaldehyde (150) E, ebonite (150) E, urea—formaldehyde (150) G, poly(vinylchloride) (152). To convert... Fig. 3. Effect of density on compressive modulus of rigid cellular polymers. A, extmded polystyrene (131) B, expanded polystyrene (150) C-1, C-2, polyether polyurethane (151) D, phenol—formaldehyde (150) E, ebonite (150) E, urea—formaldehyde (150) G, poly(vinylchloride) (152). To convert...
The principal classes of high performance fibers are derived from rigid-rod polymers, gel spun fibers, modified carbon fibers, synthetic vitreous fibers, and poly(phenyiene sulfide) fibers. [Pg.64]

PBO andPBZT. PBZ, a family of/ -phenylene-heterocycHc rigid-rod and extended chain polymers includes poly(/)-phenylene-2,6-benzobisthiazole) [69794-31-6] trans-V 27V) and poly(/)-phenylene-2,6-benzobisoxazole) [60871-72-9] (ot-PBO). PBZT and PBO were initially prepared at the Air Force Materials Laboratory at Wright-Patterson Air Force Base, Dayton, Ohio. PBZT was prepared by the reaction of... [Pg.66]

The newer open-ceU foams, based on polyimides (qv), polyben2imida2oles, polypyrones, polyureas, polyphenylquinoxalines, and phenoHc resins (qv), produce less smoke, are more fire resistant and can be used at higher temperatures. These materials are more expensive and used only for special appHcations including aircraft and marine vessels. Rigid poly(vinyl chloride) (PVC) foams are available in small quantities mainly for use in composite panels and piping appHcations (see Elame retardants Heat-RESISTANTPOLYA rs). [Pg.331]

Increa sing the bulkiness of the alkyl group from the esterifying alcohol in the ester also restricts the motion of backbone polymer chains past each other, as evidenced by an increase in the T within a series of isomers. In Table 1, note the increase in T of poly(isopropyl methacrylate) over the / -propyl ester and similar trends within the butyl series. The member of the butyl series with the bulkiest alcohol chain, poly(/-butyl methacrylate), has a T (107°C) almost identical to that of poly(methyl methacrylate) (Tg = 105° C), whereas the butyl isomer with the most flexible alcohol chain, poly( -butyl methaciylate), has a T of 20°C. Further increase in the rigidity and bulk of the side chain increases the T. An example is poly(isobomyl methacrylate)... [Pg.261]

MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene mbber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid poly(vinyl chloride). [Pg.269]

The most innovative photohalogenation technology developed in the latter twentieth century is that for purposes of photochlorination of poly(vinyl chloride) (PVC). More highly chlorinated products of improved thermal stabiUty, fire resistance, and rigidity are obtained. In production, the stepwise chlorination may be effected in Hquid chlorine which serves both as solvent for the polymer and reagent (46). A soHd-state process has also been devised in which a bed of microparticulate PVC is fluidized with CI2 gas and simultaneously irradiated (47). In both cases the reaction proceeds, counterintuitively, to introduce Cl exclusively at unchlorinated carbon atoms on the polymer backbone. [Pg.391]

Uses. Phthabc anhydride is used mainly in plasticizers, unsaturated polyesters, and alkyd resins (qv). PhthaUc plasticizers consume 54% of the phthahc anhydride in the United States (33). The plasticizers (qv) are used mainly with poly(vinyl chloride) to produce flexible sheet such as wallpaper and upholstery fabric from normally rigid polymers. The plasticizers are of two types diesters of the same monohydric alcohol such as dibutyl phthalate, or mixed esters of two monohydric alcohols. The largest-volume plasticizer is di(2-ethylhexyl) phthalate [117-81-7] which is known commercially as dioctyl phthalate (DOP) and is the base to which other plasticizers are compared. The important phthahc acid esters and thek physical properties are Hsted in Table 12. The demand for phthahc acid in plasticizers is naturally tied to the growth of the flexible poly(vinyl chloride) market which is large and has been growing steadily. [Pg.485]

Copolymers of S-caprolactone and L-lactide are elastomeric when prepared from 25% S-caprolactone and 75% L-lactide, and rigid when prepared from 10% S-caprolactone and 90% L-lactide (47). Blends of poly-DL-lactide and polycaprolactone polymers are another way to achieve unique elastomeric properties. Copolymers of S-caprolactone and glycoHde have been evaluated in fiber form as potential absorbable sutures. Strong, flexible monofilaments have been produced which maintain 11—37% of initial tensile strength after two weeks in vivo (48). [Pg.192]

Polyester Polyols. Initially polyester polyols were the preferred raw materials for polyurethanes, but in the 1990s the less expensive polyether polyols dominate the polyurethane market. Inexpensive aromatic polyester polyols have been introduced for rigid foam appHcations. These are obtained from residues of terephthaHc acid production or by transesterification of dimethyl terephthalate (DMT) or poly(ethylene terephthalate) (PET) scrap with glycols. [Pg.347]


See other pages where Rigid poly is mentioned: [Pg.18]    [Pg.207]    [Pg.400]    [Pg.52]    [Pg.375]    [Pg.377]    [Pg.378]    [Pg.381]    [Pg.420]    [Pg.537]    [Pg.64]    [Pg.65]    [Pg.73]    [Pg.327]    [Pg.523]    [Pg.83]    [Pg.261]    [Pg.296]    [Pg.429]    [Pg.233]    [Pg.233]    [Pg.451]    [Pg.515]    [Pg.145]    [Pg.342]    [Pg.399]    [Pg.433]    [Pg.434]    [Pg.270]    [Pg.528]    [Pg.55]    [Pg.378]    [Pg.535]    [Pg.77]    [Pg.349]    [Pg.350]    [Pg.413]    [Pg.436]    [Pg.450]    [Pg.463]   
See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.4 , Pg.16 , Pg.27 , Pg.33 , Pg.83 , Pg.114 , Pg.124 , Pg.132 , Pg.133 , Pg.156 , Pg.157 , Pg.195 , Pg.199 , Pg.257 , Pg.265 , Pg.266 , Pg.288 , Pg.315 , Pg.316 , Pg.384 , Pg.386 ]

See also in sourсe #XX -- [ Pg.430 ]

See also in sourсe #XX -- [ Pg.27 , Pg.131 ]

See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Aromatic Polyamide-Rigid Rod Kevlar Poly(p-Phenylene Terephthalamide) Fibers

Poly ether Polyols for Rigid Polyurethane Foams

Poly rigid polymer

Poly rigid-chain

Poly rigidity of macromolecules

Poly soft flexible/rigid vinyl

Rigid poly urethane foams

Urethanes, poly rigid

© 2024 chempedia.info