Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The direct process

The bulk of the methylsilicones are today manufactured via the direct process. In 1945 Rochow found that a variety of alkyl and aryl halides may be made [Pg.818]

The hydrocarbon can be in either the liquid or vapour phase and the silicon is finely divided. The inclusion of certain solid catalysts in the reactive mass may in some instances greatly facilitate the reaction. A mixture of powdered silicon and copper in the ratio 90 10 is used in the manufacture of alkyl chlorosilanes. [Pg.819]

In practice vapours of the hydrocarbon halide, e.g. methyl chloride, are passed through a heated mixture of the silicon and copper in a reaction tube at a temperature favourable for obtaining the optimum yield of the dichlorosilane, usually 250-280°C. The catalyst not only improves the reactivity and yield but also makes the reaction more reproducible. Presintering of the copper and silicon or alternatively deposition of copper on to the silicon grains by reduction of copper (I) chloride is more effective than using a simple mixture of the two elements. The copper appears to function by forming unstable copper methyl, CUCH3, on reaction with the methyl chloride. The copper methyl then decomposes into free methyl radicals which react with the silicon. [Pg.819]

Under the most favourable reaction conditions when methyl chloride is used the crude product from the reaction tube will be composed of about 73.5% dimethyldichlorosilane, 9% trichloromethysilane and 6% chlorotrimethylsilane together with small amounts of other silanes, silicon tetrachloride and high boiling residues. [Pg.819]

The reaction products must then be fractionated as in the Grignard process. [Pg.819]


In the direct process, NF is produced by the reaction of NH and F2 in the presence of molten ammonium acid fluoride (27). The process uses a specially designed reactor (28). Because H2 is not generated in this process, the ha2ards associated with the reactions between NF and H2 are elirninated. [Pg.217]

A modification of the direct process has recentiy been reported usiag a ckculating reactor of the Buss Loop design (11). In addition to employing lower temperatures, this process is claimed to have lower steam and electricity utihty requirements than a more traditional reactor (12) for the direct carbonylation, although cooling water requirements are higher. The reaction can also be performed ia the presence of an amidine catalyst (13). Related processes have been reported that utilize a mixture of methylamines as the feed, but require transition-metal catalysts (14). [Pg.513]

Two processes, developed for the direct processing of lead sulfide concentrates to metallic lead (qv), have reached commercial scale. The Kivcet process combines flash smelting features and carbon reduction. The QSL process is a bath-smelting reactor having an oxidation 2one and a reduction 2one. Both processes use industrial oxygen. The chemistry can be shown as follows ... [Pg.168]

A typical process scheme for the direct hydration of propylene is shown ia Figure 2. Turnkey plants based on this technology are available (71,81). The principal difference between the direct and iadirect processes is the much higher pressures needed to react propylene direcdy with water. Products and by-products are also similar, and refining systems are essentially the same. Under some conditions, the high pressures of the direct process can increase the production of propylene polymers. [Pg.109]

For some apphcations, eg, foam mbber, high soHds (>60%) latices are requited. In the direct process, the polymerization conditions are adjusted to favor the production of relatively large average particle-size latices by lowering the initial emulsifier and electrolyte concentration and the water level ia the recipe, and by controlling the initiation step to produce fewer particles. Emulsifier and electrolyte are added ia increments as the polymerization progresses to control latex stabiUty. A latex of wt% soHds is obtained and concentrated by evaporation to 60—65 wt % soHds. [Pg.254]

Direct Process. The preparation of organosilanes by the direct process, first reported in 1945, is the primary method used commercially (142,143). Organosilanes in the United States, France, Germany, Japan, and the CIS are prepared by this method, including CH SiHCl, (CH2)2SiHCl, and C2H SiHCl2. Those materials are utilized as polymers and reactive intermediates. The synthesis involves the reaction of alkyl haUdes, eg, methyl and ethyl chloride, with siUcon metal or siUcon alloys in a fluidized bed at 250—450°C ... [Pg.29]

Similar disproportionation reactions are catalyzed by organic catalysts, eg, adiponittile, pyridine, and dimethyl acetamide. Methods for the redistribution of methyUiydridosilane mixtures from the direct process have been developed to enhance the yield of dimethylchlorosilane (158). [Pg.30]

In 1940 Rochow discovered the direct process, also cabed the methylchlorosilane (MCS) process, in which methyl chloride is passed over a bed of sibcon and copper to produce a variety of methylchlorosilanes, including dim ethyl dichi oro sil a n e [75-78-5] (CH2)2SiCl2. Working independently, Mbber made a similar discovery in Germany. Consequently, the process is frequently cabed the Rochow process and sometimes the Rochow-Mbber reaction. [Pg.42]

Synthesis of Silicone Monomers and Intermediates. Another important reaction for the formation of Si—C bonds, in addition to the direct process and the Grignard reaction, is hydrosdylation (eq. 3), which is used for the formation of monomers for producing a wide range of organomodified sihcones and for cross-linking sihcone polymers (8,52—58). Formation of ether and ester bonds at sihcon is important for the manufacture of curable sihcone materials. Alcoholysis of the Si—Cl bond (eq. 4) is a method for forming silyl ethers. HCl removal is typically accomphshed by the addition of tertiary amines or by using NaOR in place of R OH to form NaCl. [Pg.44]

The manufacture of polydimethylsiloxane polymers is a multistep process. The hydrolysis of the chlorosilanes obtained from the direction process yields a mixture of cycHc and linear sdanol-stopped oligomers, called hydrolysate (eq. 7) (21). In some cases, chloro-stopped polymers can also be obtained (59). [Pg.45]

The ratio of cycHc to linear oligomers, as well as the chain length of the linear sdoxanes, is controlled by the conditions of hydrolysis, such as the ratio of chlorosilane to water, temperature, contact time, and solvents (60,61). Commercially, hydrolysis of dim ethyl dichi oro sil a n e is performed by either batch or a continuous process (62). In the typical industrial operation, the dimethyl dichi orosilane is mixed with 22% a2eotropic aqueous hydrochloric acid in a continuous reactor. The mixture of hydrolysate and 32% concentrated acid is separated in a decanter. After separation, the anhydrous hydrogen chloride is converted to methyl chloride, which is then reused in the direct process. The hydrolysate is washed for removal of residual acid, neutralized, dried, and filtered (63). The typical yield of cycHc oligomers is between 35 and 50%. The mixture of cycHc oligomers consists mainly of tetramer and pentamer. Only a small amount of cycHc trimer is formed. [Pg.45]

The poly(vinyl acetals) may be made either from poly(vinyl alcohol) or directly from poly(vinyl acetate) without separating the alcohol. In the case of poly(vinyl formal) the direct process is normally used. [Pg.392]

Similar reactions can also be written for the alkoxysilanes but in commercial practice the chlorosilanes are favoured. These materials may be prepared by many routes, of which four appear to be of commercial value, the Grignard process, the direct process, the olefin addition method and the sodium condensation method. [Pg.817]

The direct process is less flexible than the Grignard process and is restricted primarily to the production of the, nevertheless all-important, methyl- and phenyl-chlorosilanes. The main reason for this is that higher alkyl halides than methyl chloride decompose at the reaction temperature and give poor yields of the desired products and also the fact that the copper catalyst is only really effective with methyl chloride. [Pg.819]

The direct process involves significantly fewer steps than the Grignard process and is more economical in the use of raw materials. This may be seen by considering the production of chlorosilanes by both processes starting from the basic raw materials. For the Grignard process the basic materials will normally be sand, coke, chlorine and methane and the following steps will be necessary before the actual Grignard reaction ... [Pg.819]

On the other hand only the additional steps (1) and (3) will be required in the direct process which gives the summarised equation ... [Pg.820]

Phenylphosphole with [Os3(CO)l2] and [Os3(CO)ll(AN)] under reflux conditions gives rise to 240 (R = H) and 241 as isolable products [91JOM(408)C18]. l-Phenyl-3,4-dimethylphosphole with [Os3(CO)l2] or [Os3(CO)j (AN)lo -J (x= 1, 2) yields 242 and 243. The latter, however, experiences subsequent oxidative addition to give 240 (R = Me). Species 242 and 240 (R = Me) mutually transform into each other, the direct process induced by light and the reverse occurring in dark [91JCS(D)3381],... [Pg.160]

Rendita,/. extent of weighting (fabrics), renken, v.t. bend, turn wrench, sprain. Renn-arbeit, /. Iron) direct process, -eisen, 71. malleable iron extracted by the direct process. [Pg.363]

A process which can be performed backwards so that all changes occurring in any part of the direct process are exactly reversed in the corresponding part of the reverse process, and no other changes are left in external bodies, is called a reversible process. [Pg.48]

Preparation of highly active CuCl catalyst for the direct process of methylchlorosilane production... [Pg.325]

Organosilanes, especially dimethyldichlorosilane (M2), are important chemicals used in the silicone industries. The direct reaction of silicon with an organic halide to produce the corresponding organosilanes as a gas-solid-solid catalytic reaction was first disclosed by Rochow [1]. In the reaction, a copper-containing precursor first reacts with silicon particles to form the catalytically active component, which is a copper-silicon alloy, the exact state of which is still under discussion. As the reaction proceeds. Si in the alloy is consumed, which is followed by the release of copper. This copper diffuses into the Si lattice to form new reaction centers until deactivation occurs. The main reaction of the direct process is ... [Pg.325]

CuCl, especially in a single crystal form, is extensively used as an optical material for its special optical properties. Orel et al. [2] first proposed a new method to obtain CuCl particles by the reduction of Cu with ascorbic acid. Several dispersants were used in the reduction and monodispersed CuCl particles can be obtained by selecting the proper dispersant and reduction conditions. In this work, the above method was used to modify the traditional process of CuCl preparation, namely, by reducing the Cu " with sodium sulfite to obtain the highly active CuCl catalyst to be used in the direct process of methylchlorosilane synthesis. [Pg.325]

The reactivity and product selectivity increase as dispersing agents were introduced. Simultaneously, a higher silicon conversion was also obtained. A higher silicon conversion will decrease the burden of waste disposal. Therefore, this study provides a convenient and economical way for the preparation of highly effective CuCl catalyst that can be used in practical production using the direct process. [Pg.328]

Highly active CuCl catalysts for the direct process of methylchlorosilane synthesis were prepared by reducing Cu with a sodium sulfite solution in the presence of dispersing agents. Several well-known dispersants, e.g. SDBS, were used in this study. When SDBS was used, a catalyst in the form of small flakes was obtained that gave the best performance in reactivity, product selectivity and silicon conversion. This provides a convenient way to prepare the CuCl catalyst for use in industrial production. [Pg.328]

Several types of spin-lattice relaxation processes have been described in the literature [31]. Here a brief overview of some of the most important ones is given. The simplest spin-lattice process is the direct process in which a spin transition is accompanied by the creation or annihilation of a single phonon such that the electronic spin transition energy, A, is exchanged by the phonon energy, hcoq. Using the Debye model for the phonon spectrum, one finds for k T A that... [Pg.211]

If the Zeeman splitting is large compared to the crystal field splitting, this leads to cx B T. Usually, the direct process is important only compared to other spin-lattice processes at low temperatures, because only low-energy phonons with hojq = A contribute to the direct process. [Pg.211]

As already observed for some isotropic polynuclear clusters [30 - 32], slow relaxation of the magnetization in an external magnetic field can occur because of the inefficient transfer of energy to the environment, for example, the helium bath, and consequent reabsorption of the emitted phonon by the spin system. The phenomenon, also known as phonon bottleneck (PB), was first introduced by Van Vleck [33]. It is characteristic of low temperatures, where relaxation is dominated by the direct process between closely spaced levels, and results from the low density of phonons with such a long wavelength to match the small energy separation... [Pg.94]

American Also known as the Wetherill process, and the Direct process. A process for making zinc oxide, in the form of a white pigment, from a zinc oxide ore. The ore is usually franklinite, which is predominately ZnFe204. The ore is mixed with coal and heated in a furnace to approximately 1,000°C, forming zinc vapor in a reducing atmosphere. The vapors pass to a second chamber in which they are oxidized with air, forming zinc oxide and carbon dioxide. See also French. [Pg.20]

Consequently, in the early 1990s, interest in the direct processes decreased markedly, and the emphasis in research on CH4 conversion returned to the indirect processes giving synthesis gas (13). In 1990, Ashcroft et al. (13) reported some effective noble metal catalysts for the reaction about 90% conversion of methane and more than 90% selectivity to CO and H2 were achieved with a lanthanide ruthenium oxide catalyst (L2Ru207, where L = Pr, Eu, Gd, Dy, Yb or Lu) at a temperature of about 1048 K, atmospheric pressure, and a GHSV of 4 X 104 mL (mL catalyst)-1 h-1. This space velocity is much higher than that employed by Prettre et al. (3). Schmidt et al. (14-16) and Choudhary et al. (17) used even higher space velocities (with reactor residence times close to 10-3 s). [Pg.322]


See other pages where The direct process is mentioned: [Pg.29]    [Pg.30]    [Pg.43]    [Pg.509]    [Pg.394]    [Pg.818]    [Pg.925]    [Pg.363]    [Pg.97]    [Pg.486]    [Pg.272]    [Pg.334]    [Pg.150]    [Pg.60]    [Pg.167]    [Pg.92]    [Pg.316]    [Pg.328]    [Pg.363]    [Pg.195]   


SEARCH



Direct Process

Directed processes

Directing process

Direction of the Spontaneous Processes

The Directive

The direct, indirect and hyperdirect pathways of basal ganglia information processing

© 2024 chempedia.info