Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper methyl

In practice vapours of the hydrocarbon halide, e.g. methyl chloride, are passed through a heated mixture of the silicon and copper in a reaction tube at a temperature favourable for obtaining the optimum yield of the dichlorosilane, usually 250-280°C. The catalyst not only improves the reactivity and yield but also makes the reaction more reproducible. Presintering of the copper and silicon or alternatively deposition of copper on to the silicon grains by reduction of copper (I) chloride is more effective than using a simple mixture of the two elements. The copper appears to function by forming unstable copper methyl, CUCH3, on reaction with the methyl chloride. The copper methyl then decomposes into free methyl radicals which react with the silicon. [Pg.819]

Scheme 1.14 The choice of copper methylated aldehyde was preferentially incorporated into copper(l) complexes in aqueous solution. Scheme 1.14 The choice of copper methylated aldehyde was preferentially incorporated into copper(l) complexes in aqueous solution.
The copper methyl is unstable at the temperature of reaction and soon decomposes to metallic copper and free methyl radicals, the latter being identified by their ability to wipe off a mirror of lead on glass (the Paneth test). This decomposition occurs in about 0.003 second... [Pg.28]

At first it was thought that the copper methyl might react with the silicon halide in the manner of a Grignard reagent, but copper ethyl and copper phenyl prepared in ether suspension did not react with silicon tetrachloride. Neither did free methyl radicals from lead tetramethyl react with elementary, silicon, but they did add on silicon that was being chlorinated. This suggests that the third step in the mechanism is the addition of methyl groups to the chlorinated silicon formed in the cuprous chloride reduction ... [Pg.29]

Thus the function of the copper catalyst in the synthesis of methyl-chlorosilanes seems to be to transport the free methyl groups and to prolong their life in the form of copper methyl, and also to transfer the chlorine from methyl chloride to silicon. It is probable that copper acts similarly in the reaction of other hydrocarbon halides with silicon, and that similar metals also may undergo the same cycle of reactions. [Pg.29]

The first investigation of the mechanism of the R.-M. synthesis was already carried out as early as 1945 by Hurd and Rochow [6]. They discussed the possibility that a volatile and unstable copper methyl or even fl ee methyl radicals may play a decisive role. As a key step the methyl radicals were believed to react with SiCl centers on the surface of the catalyst. [Pg.97]

Costa E., Camus A., Marsich N.J. Copper methoxides formed by thermal decomposition of copper methyl in methanol. Inorg. Nucl. Chem. 1965 27 281 Daniele S., Hubert-Pfalzgraf L.G., Daran J.C. Building of lanthanide oxoalkoxides Synthesis and molecular structure of [Gd6(/i4-0)(/x3,77 -OR)4(R,/j -OR)6(/iv -OR)2(OR)4] (R= C2H40Me). Polyhedron 1996 15 1063... [Pg.32]

Prepare a mixture of 30 ml, of aniline, 8 g. of o-chloro-benzoic acid, 8 g. of anhydrous potassium carbonate and 0 4 g. of copper oxide in a 500 ml. round-bottomed flask fitted with an air-condenser, and then boil the mixture under reflux for 1 5 hours the mixture tends to foam during the earlier part of the heating owing to the evolution of carbon dioxide, and hence the large flask is used. When the heating has been completed, fit the flask with a steam-distillation head, and stcam-distil the crude product until all the excess of aniline has been removed. The residual solution now contains the potassium. V-phenylanthrani-late add ca. 2 g. of animal charcoal to this solution, boil for about 5 minutes, and filter hot. Add dilute hydrochloric acid (1 1 by volume) to the filtrate until no further precipitation occurs, and then cool in ice-water with stirring. Filter otT the. V-phcnylanthranilic acid at the pump, wash with water, drain and dry. Yield, 9-9 5 g. I he acid may be recrystallised from aqueous ethanol, or methylated spirit, with addition of charcoal if necessary, and is obtained as colourless crystals, m.p. 185-186°. [Pg.217]

Formaldehyde is a gas, b.p. — 21°, and is usually prepared by the dehydrogenation of methyl alcohol m the presence of heated copper or silver. By admitting air with the methyl alcohol vapour, part of the hydrogen is oxidised to give the heat necessary for the reaction ... [Pg.318]

Prepare a coil of copper wire by winding several turns around a glass tube. Heat the coil in the oxidising flame of a Bunsen burner for 1-2 minutes and plunge the spiral, whilst still red hot, into a test-tube containing a solution of 1 ml. of methyl alcohol and 5 ml. of water. Stopper the test-tube loosely, cool, remove the wire, and repeat the process two or three times. Observe the odour of the solution and use it (or formalin diluted with water) to carry out the following tests. [Pg.325]

Keep a coil of copper wire (prepared by winding copper wire round a glass tube) or a little silver powder in the bottle, which should be of brown or amber glass the methyl iodide will remain colourless indefinitely. Ethyl iodide may sometimes give more satis factory results. [Pg.660]

Chemoselective C-alkylation of the highly acidic and enolic triacetic acid lactone 104 (pAl, = 4.94) and tetronic acid (pA, = 3.76) is possible by use of DBU[68]. No 0-alkylation takes place. The same compound 105 is obtained by the regioslective allylation of copper-protected methyl 3,5-dioxohexano-ate[69]. It is known that base-catalyzed alkylation of nitro compounds affords 0-alkylation products, and the smooth Pd-catalyzed C-allylation of nitroalkanes[38.39], nitroacetate[70], and phenylstilfonylnitromethane[71] is possible. Chemoselective C-allylation of nitroethane (106) or the nitroacetate 107 has been applied to the synthesis of the skeleton of the ergoline alkaloid 108[70]. [Pg.305]

CO, and methanol react in the first step in the presence of cobalt carbonyl catalyst and pyridine [110-86-1] to produce methyl pentenoates. A similar second step, but at lower pressure and higher temperature with rhodium catalyst, produces dimethyl adipate [627-93-0]. This is then hydrolyzed to give adipic acid and methanol (135), which is recovered for recycle. Many variations to this basic process exist. Examples are ARCO s palladium/copper-catalyzed oxycarbonylation process (136—138), and Monsanto s palladium and quinone [106-51-4] process, which uses oxygen to reoxidize the by-product... [Pg.244]

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

The chemical complex includes the methanol plant, methyl acetate plant, and acetic anhydride plant. The methanol plant uses the Lurgi process for hydrogenation of CO over a copper-based catalyst. The plant is capable of producing 165,000 t/yr of methanol. The methyl acetate plant converts this methanol, purchased methanol, and recovered acetic acid from other Eastman processes into approximately 440,000 t/yr of methyl acetate. [Pg.167]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]


See other pages where Copper methyl is mentioned: [Pg.31]    [Pg.31]    [Pg.29]    [Pg.181]    [Pg.31]    [Pg.31]    [Pg.29]    [Pg.181]    [Pg.329]    [Pg.485]    [Pg.953]    [Pg.48]    [Pg.77]    [Pg.85]    [Pg.176]    [Pg.134]    [Pg.157]    [Pg.159]    [Pg.159]    [Pg.188]    [Pg.195]    [Pg.321]    [Pg.335]    [Pg.128]    [Pg.69]    [Pg.182]    [Pg.446]    [Pg.448]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Copper methyl]-alkoxides

Methyl 2-diazo-3-oxobutyrate, copper

Methyl copper complex

Methyl sorbate copper hydrides

© 2024 chempedia.info