Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water levels

This property is useful in helping to define the interface between fluids. The intercept between the gas and oil gradients indicates the gas-oil contact (GOG), while the intercept between the oil and water gradients indicates the free water level (FWL) which is related to the oil water contact (OWC) via the transition zone, as described in Section 5.9. [Pg.117]

In a normally pressured reservoir, the pressure is transmitted through a continuous column of water from the surface down to the reservoir. At the datum level at surface the pressure is one atmosphere. The datum level for an offshore location is the mean sea level (msl), and for a onshore location, the ground water level. [Pg.118]

In a reservoir at initial conditions, an equilibrium exists between buoyancy forces and capillary forces. These forces determine the initial distribution of fluids, and hence the volumes of fluid in place. An understanding of the relationship between these forces is useful in calculating volumetries, and in explaining the difference between free water level (FWL) and oil-water contact (OWC) introduced in the last section. [Pg.120]

A well known example of capillary-buoyancy equilibrium is the experiment in which a number of glass tubes of varying diameter are placed into a tray of water. The water level rises up the tubes, reaching its highest point in the narrowest of the tubes. The same observation would be made if the fluids in the system were oil and water rather than air and water. [Pg.120]

The capillary pressure can be related to the height of the interface above the level at which the capillary pressure is zero (called the free water level) by using the hydrostatic pressure equation. Assuming the pressure at the free water level is PI ... [Pg.122]

This is consistent with the observation that the largest difference between the oil-water interface and the free water level (FWL) occurs in the narrowest capillaries, where the capillary pressure is greatest. In the tighter reservoir rocks, which contain the narrower capillaries, the difference between the oil-water interface and the FWL is larger. [Pg.123]

If a pressure measuring device were run inside the capillary, an oil gradient would be measured in the oil column. A pressure discontinuity would be apparent across the interface (the difference being the capillary pressure), and a water gradient would be measured below the interface. If the device also measured resistivity, a contact would be determined at this interface, and would be described as the oil-water contact (OWC). Note that if oil and water pressure measurements alone were used to construct a pressure-depth plot, and the gradient intercept technigue was used to determine an interface, it is the free water level which would be determined, not the OWC. [Pg.123]

Finally, it is worth remembering the sequence of events which occur during hydrocarbon accumulation. Initially, the pores in the structure are filled with water. As oil migrates into the structure, it displaces water downwards, and starts with the larger pore throats where lower pressures are required to curve the oil-water interface sufficiently for oil to enter the pore throats. As the process of accumulation continues the pressure difference between the oil and water phases increases above the free water level because of the density difference between the two fluids. As this happens the narrower pore throats begin to fill with oil and the smallest pore throats are the last to be filled. [Pg.124]

Fig. 5. Vacuum caUbrator for pipe and tubing extmsion A, molten tube from die B, tank C, hinged cover with gasket D, siting rings E, circulated and temperature controlled water E, water level G, vacuum and H, inside of pipe open to atmospheric pressure (15). Fig. 5. Vacuum caUbrator for pipe and tubing extmsion A, molten tube from die B, tank C, hinged cover with gasket D, siting rings E, circulated and temperature controlled water E, water level G, vacuum and H, inside of pipe open to atmospheric pressure (15).
For some apphcations, eg, foam mbber, high soHds (>60%) latices are requited. In the direct process, the polymerization conditions are adjusted to favor the production of relatively large average particle-size latices by lowering the initial emulsifier and electrolyte concentration and the water level ia the recipe, and by controlling the initiation step to produce fewer particles. Emulsifier and electrolyte are added ia increments as the polymerization progresses to control latex stabiUty. A latex of wt% soHds is obtained and concentrated by evaporation to 60—65 wt % soHds. [Pg.254]

Gas turbine fuels can contain natural surfactants if the cmde fraction is high in organic acids, eg, naphthenic (cycloparaffinic) acids of 200—400 mol wt. These acids readily form salts that are water-soluble and surface-active. Older treating processes for sulfur removal can leave sulfonate residues which are even more powerful surfactants. Refineries have installed processes for surfactant removal. Clay beds to adsorb these trace materials are widely used, and salt towers to reduce water levels also remove water-soluble surfactants. In the field, clay filters designed as cartridges mounted in vertical vessels are also used extensively to remove surfactants picked up in fuel pipelines, in contaminated tankers, or in barges. [Pg.411]

In this case, reduced river water levels resulting from a drought may have caused an increase in the amount of sand and sdt entrained in the water, thereby increasing its erosive character. This may also account for the greater metal loss along the bottom half of the tubes, where heavy solids would tend to accumulate. [Pg.255]

A more economical alternative is found in a submersible pump where the pump, directly coupled with the prime mover, is slid into the tubewell through narrow pipes. Narrow pipes are easy to sink into rocky terrain or very deep water levels. They are less expensive and are easy to install due to the elimination of the need for a pump house. Once the unit is slid into the well it requires little maintenance. (See Figures 7.5-7.7.) Such pumps have a standard centrifugal multistage arrangement, and the motors are required to work under water or any other liquid. These motors have an exclusive application for submersible pumps. [Pg.170]

Fig. 1.4. Miniature boiler fittings mode from brass a water-level gauge, a steam valve, a pressure gauge, and a feed-water injector. Brass is so easy to machine that it is good for intricate ports like these. Fig. 1.4. Miniature boiler fittings mode from brass a water-level gauge, a steam valve, a pressure gauge, and a feed-water injector. Brass is so easy to machine that it is good for intricate ports like these.
A tank with a fixed cover of plain carbon steel for storing 60°C warm, softened boiler feed water that had a tar-pitch epoxy resin coating showed pits up to 2.5 mm deep after 10 years of service without cathodic protection. Two separate protection systems were built into the tank because the water level varied as a result of service conditions. A ring anode attached to plastic supports was installed near the bottom of the tank and was connected to a potential-controlled protection rectifier. The side walls were protected by three vertical anodes with fixed adjustable protection current equipment. [Pg.459]

Cathodic protection of water power turbines is characterized by wide variations in protection current requirements. This is due to the operating conditions (flow velocity, water level) and in the case of the Werra River, the salt content. For this reason potential-controlled rectifiers must be used. This is also necessary to avoid overprotection and thereby damage to the coating (see Sections 5.2.1.4 and 5.2.1.5 as well as Refs. 4 and 5). Safety measures must be addressed for the reasons stated in Section 20.1.5. Notices were fixed to the turbine and the external access to the box headers which warned of the danger of explosion from hydrogen and included the regulations for the avoidance of accidents (see Ref. 4). [Pg.474]

Limited to residents in BRA s weatherization program Adopted OSHA standards Indoor air exposures considered in determining drinking water levels Restricts use and sales of pesticides which may cause indoor air pollution Bans on use of some potential indoor pollutants in consumer products Restricts smoking in specified indoor environments Restricts use of asl estos in VA buildings... [Pg.390]

Vj = The actual water holding capacity of the drum between the normal water level and the level at which tubes would be critically exposed, gal. [Pg.143]

G = The volume of water required to fill the entire boiler to the normal water level, gal. [Pg.143]

For all its benefits, the water/isocyanate reaction can be troublesome as well. All raw materials that go into a one-component moisture-cured adhesive must have very low moisture content, usually less than 0.05% water. If higher water levels are present, the adhesive can start curing in the reactor, causing an increase in viscosity, or, in extreme cases, gelation. [Pg.764]


See other pages where Water levels is mentioned: [Pg.89]    [Pg.115]    [Pg.428]    [Pg.473]    [Pg.552]    [Pg.410]    [Pg.46]    [Pg.361]    [Pg.405]    [Pg.459]    [Pg.454]    [Pg.49]    [Pg.379]    [Pg.363]    [Pg.153]    [Pg.224]    [Pg.471]    [Pg.763]    [Pg.1683]    [Pg.1781]    [Pg.2135]    [Pg.170]    [Pg.174]    [Pg.700]    [Pg.37]    [Pg.441]    [Pg.459]    [Pg.472]    [Pg.79]    [Pg.273]   
See also in sourсe #XX -- [ Pg.28 , Pg.71 , Pg.83 , Pg.88 , Pg.129 , Pg.177 , Pg.181 , Pg.182 , Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 , Pg.190 , Pg.284 , Pg.500 , Pg.652 , Pg.653 ]

See also in sourсe #XX -- [ Pg.139 , Pg.242 , Pg.310 , Pg.311 , Pg.320 , Pg.323 , Pg.325 ]

See also in sourсe #XX -- [ Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.316 , Pg.317 , Pg.318 , Pg.319 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 , Pg.329 , Pg.330 , Pg.331 , Pg.332 , Pg.333 , Pg.334 , Pg.335 , Pg.362 ]

See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.218 , Pg.221 ]




SEARCH



© 2024 chempedia.info