Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terephthalic acid manufacture

Terephthalic acid manufacture, platinum-group metal catalysts in, 29 622 Terephthalic acid PET bottle resin process, 20 48-50... [Pg.927]

V. F. Nazimok and L. M. Pivovar, Development of terephthalic acid manufacture, Fibre Chem., 23 406-409,1992. [Pg.173]

Chandrasekara, R, Kwon, T. and Moon, I. (2009). Degradation of Wastewater from Terephthalic Acid Manufacturing Process by Ozonation Catalyzed with Fe " ", H2O2 and UV Light Direct Versus Indirect Ozonation Reactions, Appl. Catal. B Environ., 91, pp. 319-328. [Pg.285]

Terephthalic acid manufacturing plant COD 15000 mg/1 y-Al203 418-513°C 220-300 bar flow reactor 98% COD 218... [Pg.862]

Park, T., Lim, J., Lee, Y., et al. (2003). Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process, J. Supercrit. Fluid, 26, pp. 201-213. [Pg.876]

Purified terephthalic acid and dimethyl terephthalate are used as raw materials for the production of saturated polyesters. During 1993, the combined worldwide production of purified terephthafic acid plus dimethyl terephthalate exceeded 14 x 10 t (42), which is 80% of the total benzenepolycarboxyfic acid production. Terephthafic acid is also produced ia technical or cmde grades which are not pure enough for manufacture of poly(ethylene terephthalate). In almost all cases, the technical-grade material is immediately converted to purified terephthafic acid or dimethyl terephthalate, which together are the articles of commerce. [Pg.486]

Manufacture and Processing. Terephthalic acid and dimethyl terephthalate did not become large-volume industrial chemicals until after World War II. Imperial Chemical Industries in the United Kingdom in 1949 and Du Pont in the United States in 1953 commercialized fibers made from poly(ethylene terephthalate). Dimethyl terephthalate and ethylene glycol were the comonomers used by both companies (see Fibers, polyester). [Pg.487]

In recent years, however, the ester exchange reaction has been decreasingly used, with manufacturers now usually preferring to use direct acid glycol condensation with purified terephthalic acid. [Pg.718]

Colbalt Hydrogenations of solid fuels and fuel oils Manufacture of terephthalic acid High pressure production of aldehydes Lung irritation (hard metal disease) respiratory sensitization... [Pg.121]

Your company manufactures terephthalic acid, a listed chemical, both for sale/distribution as a commercial product and for on-site use/processino as a feedstock in the polyester process. Because it is a reactant, it is also processed. See Figure D for how this information would be reported in Part III, Section 3 of Form R. [Pg.38]

Paraxylene is used to make terephthalic acid, the raw material for manufacturing polyester fibers, such as Dacron, Kodel, Fortrel and Terylene. [Pg.113]

In the late 1950 s two groups - one at ICI (ref. 1) and the other at the Mid-Century Corporation (ref. 2) - independently discovered that p-xylene is oxidized to terephthalic acid in almost quantitative yield when soluble bromides are used together with cobalt and manganese catalysts in acetic acid solvent at temperatures > 130 °C (ref. 3). This discovery formed the basis for what became known as the Mid-Century process and later, when the Mid-Century Corporation was acquired by Amoco, as the Amoco MC process for the commercial production of terephthalic acid. A large part of the ca. 6 million tons of the latter that are manufactured annually, on a worldwide basis, are produced via this method. This makes it the most important catalytic oxidation process (ref. 4). [Pg.278]

Consequently, as a result of increasing environmental pressure many chlorine and nitric acid based processes for the manufacture of substituted aromatic acids are currently being replaced by cleaner, catalytic autoxidation processes. Benzoic acid is traditionally manufactured (ref. 14) via cobalt-catalyzed autoxidation of toluene in the absence of solvent (Fig. 2). The selectivity is ca. 90% at 30% toluene conversion. As noted earlier, oxidation of p-xylene under these conditions gives p-toluic acid in high yield. For further oxidation to terephthalic acid the stronger bromide/cobalt/manganese cocktail is needed. [Pg.280]

The first step in manufacturing polyethylene terephthalate is to react terephthalic acid with a large excess of ethylene glycol to form diglycol terephthalate ... [Pg.72]

Because orr/zo-xylene is more readily isolated and purified (by distillation), it costs less than para-xylene. Like all petrochemicals, prices depend on the price of crude oil but in early 2001, mixed-xylene was about 17 cents/lb while para-xylene was only about 15 cents due to high manufacturing capacity and low demand for use for making terephthalic acid. In the extremely high volumes in which such chemicals are sold, fractions of a penny difference in price can be very important. [Pg.145]

Both terephthalic acid (TPA) and dimethyl terephthalate (DMT) are used exclusively for the manufacture of polyesters for textile fibers (e.g,. Dacron ), films, soft-drink bottles, and engineering resins for automotive applications. The glycol used for most TPA-based polyesters is ethylene glycol. The polyester is then known as polyethylene terephthalate, or PET. [Pg.148]

Terephthalic acid (p-TA or TA), a raw material for polyethylene terephthalate (PET) production, is one of the most important chemicals in petrochemical industry. Crude terephthalic acid (CTA), commonly produced by homogeneous liquid phase p-xylene oxidation, contains impurities such as 4-carboxybenzaldehyde (4-CBA, 2000-5000 ppm) and several colored polyaromatics that should be removed to obtain purified terephthalic acid (PTA). PTA is manufactured by hydropurification of CTA over carbon supported palladium catalyst (Pd/C) in current industry [1]. [Pg.293]

Polymerisation of a diol with a dicarboxylic acid is exemplified by the production of a polyester from ethylene glycol and terephthalic acid either by direct esterification or by a catalysed ester-interchange reaction. The resulting polyester Terylene) is used for the manufacture of fibres and fabrics, and has high tensile strength and resiliency its structure is probably ... [Pg.1019]

Here the polymer grows by successive esterification with elimination of water and no termination step. Polymers formed by linking monomers with carboxylic acid groups and those that have alcohol groups are known as polyesters. Polymers of this type are widely used for the manufacture of artificial fibers. For example, the esterification of terephthalic acid with ethylene glycol produces polyethylene terephthalate. [Pg.80]

The hydrogenation of HMF in the presence of metal catalysts (Raney nickel, supported platinum metals, copper chromite) leads to quantitative amounts of 2,5-bis(hydroxymethyl)furan used in the manufacture of polyurethanes, or 2,5-bis(hydroxymethyl)tetrahydrofuran that can be used in the preparation of polyesters [30]. The oxidation of HMF is used to prepare 5-formylfuran-2-carboxylic acid, and furan-2,5-dicarboxylic acid (a potential substitute of terephthalic acid). Oxidation by air on platinum catalysts leads quantitatively to the diacid. [32], The oxidation of HMF to dialdehyde was achieved at 90 °C with air as oxidizing in the presence of V205/Ti02 catalysts with a selectivity up to 95% at 90% conversion [33]. [Pg.62]

Although the superior properties of PEN have been known for many years, the unavailability of the naphthalate monomer has delayed the development of commercial markets, until relatively recently (1995) when the Amoco Chemical Company offered high purity naphthalene-2,6-dimethyl dicarboxylate (NDC) in amounts of up to 60 million pounds per year. This diester is produced by a five-step synthetic route, starting from the readily available compounds, o-xylene and 1,4-butadiene [3], Prior to this, the NDC diester was obtained by extraction of 2,6-dimethylnaphthalene (DMN) from petroleum streams, where it was present in relatively low abundance. Oxidation of DMN to crude 2,6-naphthalene dixcarboxylic (NDA) is conducted by a similar process to that used for conversion of p-xylcnc to purified terephthalic acid (TA), crude NDA is esterified with methanol, and is then distilled to yield high purity NDC. Other companies (e.g. the Mitsubishi Gas Chemical Company) followed Amoco s introduction with lesser amounts of NDC. Teijin [4] has manufactured PEN for many years for its own captive uses in films. [Pg.324]

Polyester has become a mainstay commodity material. This is one material that everyone comes in contact with daily for example, it is used in clothing, bedding, upholstery and carpeting. The first patent to cover polyesters was filed in 1941 by Whinfield and Dickson, with the material defined as a polymer formed by the combination of a diacid and a diol [1]. Following this discovery, the first commercial polyester, polyethylene 1,4-terephthalate) (PET), was produced by condensation polymerization of terephthalic acid (TA) (or dimethyl terephthalate (DMT)) as the diacid moiety and ethylene glycol as the diol. PET is now a well-known and widely utilized polymer material that is used throughout the world to manufacture films and fibers. [Pg.335]

Toluene is used more commonly than the other BTXs as a commercial solvent. There are scores of solvent applications, though environmental constraints and health concerns diminish the enthusiasm for these uses. Toluene also is used to make toluene diisocyanate, the precursor to polyurethane foams. Other derivatives include phenol, benzyl alcohol, and benzoic acid. Research continues on ways to use toluene in applications that now require benzene. The hope is that the dealkylation-to-benzene or disproportionation steps can be eliminated. Processes for manufacturing styrene and terephthalic acid—the precursor to polyester fiber—are good, commercial prospects. [Pg.45]

Mixed xylenes are used as an octane improver in gasoline and for commercial solvents, particularly in industrial cleaning operations. By far, most of the commercial activity is with the individual isomers. Para-xylene, the most important, is principally used in the manufacture of terephthalic acid and dimethyl terephthalate en route to polyester plastics and fibers (Dacron, films such as Mylar, and fabricated products such as PET plastic bottles). Ortho-xylene is used to make phthalic anhydride, which in turn is used to make polyester, alkyd resins, and PVC plasticizers. Meta-xylene is used to a limited extent to make isophthahc acid, a monomer used in making thermally stable polyimide, polyester, and alkyd resins. [Pg.52]

Acetic acid also finds use as a chemical intermediate in the production of acetate esters for paint solvents and as a reaction solvent for the manufacture of terephthalic acid. Also, acetic add is the source of the acetyl group in the manufacture of acetyl salacylic acid. [Pg.260]

Adipic acid is an approved food additive and is one of the few solid petrochemicals manufactured on a commercial scale. (Terephthalic acid is another.)... [Pg.263]

Uses Manufacture of acetic acid, acetic anhydride, aldol, aniline dyes, 1-butanol, 1,3-butylene glycol, cellulose acetate, chloral, 2-ethylhexanol, paraldehyde, pentaerythritol, peracetic acid, pyridine derivatives, terephthalic acid, trimethylolpropane, flavors, perfumes, plastics, synthetic rubbers, disinfectants, drugs, explosives, antioxidants, yeast silvering mirrors hardening gelatin fibers. [Pg.57]

Uses Preparation of phthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid solvent for alkyd resins, lacquers, enamels, rubber cements manufacture of dyes, pharmaceuticals, and insecticides motor fuels. [Pg.1154]

Table 9.2 summarizes the uses of acetic acid. Vinyl acetate is another top 50 chemical. Acetic anhydride is used to make cellulose acetate and at times has been in the top 50 chemicals itself. Cellulose acetate is a polymer used mainly as a fiber in clothing and cigarette filters. Ethyl acetate is a common organic solvent. Acetic acid is used as a solvent in the manufacture of terephthalic acid (TA) and dimethyl terephthalate (DMT), which are monomers for the synthesis of poly(ethylene terephthalate), the polyester of the textile industry. A minor household use of acetic acid is as a 3-5% aqueous solution, which is called vinegar. [Pg.152]

Terephthalic acid is commonly abbreviated TA or TPA. The abbreviation PTA (P = pure) is reserved for the product of 99% purity for polyester manufacture. For many years polyesters had to be made from dimethyl terephthalate (DMT) because the acid could not be made pure enough economically. Now either can be used. TA is made by air oxidation of /7-xylene in acetic acid as a solvent in the presence of cobalt, manganese, and bromide ions as catalysts at 200°C and 400 psi. TA of 99.6% purity is formed in 90% yield. This is called the Amoco process. [Pg.199]


See other pages where Terephthalic acid manufacture is mentioned: [Pg.231]    [Pg.282]    [Pg.350]    [Pg.378]    [Pg.231]    [Pg.282]    [Pg.350]    [Pg.378]    [Pg.124]    [Pg.430]    [Pg.190]    [Pg.722]    [Pg.157]    [Pg.295]    [Pg.605]    [Pg.148]    [Pg.753]    [Pg.60]    [Pg.1587]    [Pg.325]    [Pg.574]    [Pg.370]    [Pg.195]   
See also in sourсe #XX -- [ Pg.514 ]




SEARCH



Terephthalic acid

Terephthalic manufacturing

© 2024 chempedia.info