Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous liquid phase

Modeling of Chemioal Kinetios and Reaotor Design ACID-BASE CATALYSIS HOMOGENEOUS LIQUID PHASE... [Pg.26]

Homogeneous reactions are those in which the reactants, products, and any catalysts used form one continuous phase (gaseous or liquid). Homogeneous gas phase reactors are almost always operated continuously, whereas liquid phase reactors may be batch or continuous. Tubular (pipeline) reactors arc normally used for homogeneous gas phase reactions (e.g., in the thermal cracking of petroleum of dichloroethane lo vinyl chloride). Both tubular and stirred tank reactors are used for homogeneous liquid phase reactions. [Pg.135]

Homogeneous liquid phase inorganic oscillatory reactions. D. O. Cooke, Prog. React. Kinet., 1978, 8,185-229(184). [Pg.45]

A homogeneous catalyst is a catalyst that is in the same phase as the reactants. For reactants that are gases, a homogeneous catalyst is also a gas. If the reactants are in a liquid solution, a homogeneous catalyst is dissolved in the solution. Dissolved bromine is a homogeneous liquid-phase catalyst for the decomposition of aqueous hydrogen peroxide ... [Pg.685]

In the presence of anunonium bromide cobalt (ref. 22) and manganese (ref. 23) have been shown to catalyze the ammoxidation of methylaromatics to the corresponding aromatic nitriles (Fig. 20). It is interesting to compare this homogeneous, liquid phase system with the more well-known vapour phase ammoxidation of alkylaromatics over oxidic catalysts (ref. 4). [Pg.296]

Homogeneous, liquid-phase reactions may also be important in trickle beds, and a strictly homogeneous term has been included in Equation (11.42) to note this fact. There is usually no reaction in the gas phase. Normally, the gas phase merely supplies or removes the gaseous reactants (e.g., H2 and H2S in hydrodesulfurization). ... [Pg.413]

Terephthalic acid (p-TA or TA), a raw material for polyethylene terephthalate (PET) production, is one of the most important chemicals in petrochemical industry. Crude terephthalic acid (CTA), commonly produced by homogeneous liquid phase p-xylene oxidation, contains impurities such as 4-carboxybenzaldehyde (4-CBA, 2000-5000 ppm) and several colored polyaromatics that should be removed to obtain purified terephthalic acid (PTA). PTA is manufactured by hydropurification of CTA over carbon supported palladium catalyst (Pd/C) in current industry [1]. [Pg.293]

The chemistry of vinyl acetate synthesis from the gas-phase oxidative coupling of acetic acid with ethylene has been shown to be facilitated by many co-catalysts. Since the inception of the ethylene-based homogeneous liquid-phase process by Moiseev et al. (1960), the active c ytic species in both the liquid and gas-phase process has always been seen to be some form of palladium acetate [Nakamura et al, 1971 Augustine and Blitz, 1993]. Many co-catalysts which help to enhance the productivity or selectivity of the catalyst have appeared in the literature over the years. The most notable promoters being gold (Au) [Sennewald et al., 1971 Bissot, 1977], cadmium acetate (Cd(OAc)j) [Hoechst, 1967], and potassium acetate (KOAc) [Sennewald et al., 1971 Bissot, 1977]. [Pg.191]

An nth-order homogeneous liquid phase reaction is carried out in a batch tank reactor. [Pg.283]

Three special cases of equation 9.2-18 arise, depending on the relative magnitudes of the two mass-transfer terms in comparison with each other and with the reaction term (which is always present for reaction in bulk liquid only). In the extreme, if all mass-transfer resistance is negligible, the situation is the same as that for a homogeneous liquid-phase reaction, ( rA)im = kAcAcB. [Pg.243]

Figure 12.3 illustrates some modes of operation of semibatch reactors. In Figure 12.3(a), depicting a homogeneous liquid-phase reaction of the type A + B - products, reactant A is initially charged to the vessel, and reactant B is added at a prescribed rate, as reaction proceeds. In Figure 12.3(b), depicting a liquid-phase reaction in which a... [Pg.309]

Adapted from Bhaumik et al. 244). Reaction conditions reaction time, 12 h reactant H202 = 1 1 catalyst (TS-1, Si/Ti = 29), 20 wt% with respect to reactant temperature, 353 K. a Tri solid catalyst + two immisible liquid phases (organic reactant + H202 in water) bi solid catalyst + one homogeneous liquid phase (organic reactant + aqueous H202 + CH3CN as cosolvent). [Pg.126]

Two compounds which mix together to give a single, homogeneous liquid phase. [Pg.2]

Esterification is the first step in PET synthesis but also occurs during melt-phase polycondensation, SSP, and extrusion processes due to the significant formation of carboxyl end groups by polymer degradation. As an equilibrium reaction, esterification is always accompanied by the reverse reaction being hydrolysis. In industrial esterification reactors, esterification and transesterification proceed simultaneously, and thus a complex reaction scheme with parallel and serial equilibrium reactions has to be considered. In addition, the esterification process involves three phases, i.e. solid TPA, a homogeneous liquid phase and the gas phase. The respective phase equilibria will be discussed below in Section 3.1. [Pg.41]

Transesterification is the main reaction of PET polycondensation in both the melt phase and the solid state. It is the dominant reaction in the second and subsequent stages of PET production, but also occurs to a significant extent during esterification. As mentioned above, polycondensation is an equilibrium reaction and the reverse reaction is glycolysis. The temperature-dependent equilibrium constant of transesterification has already been discussed in Section 2.1. The polycondensation process in the melt phase involves a gas phase and a homogeneous liquid phase, while the SSP process involves a gas phase and two solid phases. The respective phase equilibria, which have to be considered for process modelling, will be discussed below in Section 3.1. [Pg.48]

In typical industrial operations, TPA is not dissolved in EG or BHET but in prepolymer. The latter contains PET oligomers with one to approximately six to eight repeat units and a significant concentration of carboxyl end groups of between 200 and llOOmmol/kg. It was found [94] that the solubility of TPA in prepolymer is much higher than indicated by the values given in the literature. Nevertheless, the esterification reactor still contains a three-phase system and only the dissolved TPA may react with EG in a homogenous liquid-phase... [Pg.72]

The experiments on alkali iodides, PEOx-Nal or PEOx-Lil [316-318] were performed on PEO chains of 23 or 182 (-CH2-CH2-O-) monomers and Orion ratios between 15 and 50. The incoherent scattering from protonated polymers was measured using INI 1C, which yields the intermediate scattering function of the self-correlation. The experiments were performed in the homogeneous liquid phase where the added salt is completely dissolved and no crystalline aggregates coexist with the solution, i.e. at temperatures around 70 °C. [Pg.189]

A brief reading of the literature would indicate that the liquid-phase reaction is what is technically known as an absorption with fast reaction and that gaseous CO2 physically dissolves in the liquid phase and reacts in a region close to the gas—liquid interface with dissolved NH3, according to second order in ammonia, first order in CO2 homogeneous liquid-phase kinetics... [Pg.208]

Evidence in support of a carbonium ion type of mechanism for low temperature polymerization was also obtained in an investigation of the kinetics of the homogeneous liquid phase polymerization of propene in the presence of aluminum bromide and hydrogen bromide at about —78° (Fontana and Kidder, 89). The rate of reaction is approximately proportional to the concentration of the promoter, no polymerization occurring in its absence. During the main portion of the reaction, the rate is independent of the monomer concentration toward the end, it decreases, due apparently to the low-concentration of the monomer, addition of more olefin resulting in an increase in the rate. It was concluded that the reaction involves an active complex, which may be regarded as a carbonium ion coupled with an anion ... [Pg.77]

There exists as we have noted a separate phase at the interface between a liquid and a gas. The magnitude of the vapour-liquid interfacial energy is markedly dependent on the composition of the liquid and although experimental data are somewhat scanty, the surface energy is also affected by the nature of the gas in contact with it. It is to be anticipated that at the interface between two immiscible liquids a similar new interfacial phase will come into existence possessing a definite surface energy dependent on the composition of the two homogeneous liquid phases. [Pg.95]

The fluorous biphasic catalysis concept was successfully demonstrated first by hydroformylation of 1-decene carried out in perfluoromethylcyclohexane and toluene, which forms a homogeneous liquid phase at 100°C in the presence of catalyst 2 prepared in situ according to Eq. (14.1) 125,133... [Pg.813]


See other pages where Homogeneous liquid phase is mentioned: [Pg.53]    [Pg.290]    [Pg.292]    [Pg.128]    [Pg.431]    [Pg.364]    [Pg.40]    [Pg.362]    [Pg.126]    [Pg.77]    [Pg.114]    [Pg.833]    [Pg.78]    [Pg.79]    [Pg.45]    [Pg.79]    [Pg.67]    [Pg.146]    [Pg.31]    [Pg.241]    [Pg.7]    [Pg.343]    [Pg.145]    [Pg.509]    [Pg.250]   
See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.26 ]

See also in sourсe #XX -- [ Pg.375 , Pg.376 ]




SEARCH



Homogeneous liquid phase simple reaction

Homogeneous liquid phase simple reaction problem

Homogeneous liquid phase simple reaction solution

Homogeneous liquid-phase flow

Homogeneous liquid-phase flow reactors

Homogeneous nucleation liquid-phase precipitation

Homogeneous phase

Homogenous phase

Kinetic homogenous liquid phase

Liquid homogeneous

Liquid phase sintering microstructure homogenization

Liquid-phase homogenous catalysis

Liquid-phase oxidation, homogeneous catalysis

Noncatalytic homogeneous liquid phase reaction

Phases homogeneity

Reaction homogeneous liquid-phase

Reaction homogenous liquid phase

Synthesis homogeneous liquid phase

© 2024 chempedia.info