Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant hydroxide

In this procedure the synthesis mixture is reduced to three basic components silica (solid), surfactant (halide) and hydroxide as mineralizer (tetramcthylammonium hydroxide, TMA-OH), all supplied as the convenient reagents. The key parameter is the essentially stoichiometric 1 1 ratio of surfactant and hydroxide, which allows treatment of the product (MCM-41) as formally a surfactant silicate resulting from interaction between silica and surfactant hydroxide. The latter reagent is not a conveniently available or cost effective one to use. Consequently the most desirable surfactant source is its halide salt. The presented... [Pg.102]

Microemulsion Techniqne Direct/inverse micelles or microemulsion represent an approach based on the formation of micro/nano-reaction vessels under a ternary mixture containing water, oil and a surfactant. Metal precursors on water will precede precipitation as oxo-hydroxides within the aqueous droplets, typically leading to monodispersed materials with size limited by the surfactant-hydroxide contact [50]. [Pg.75]

Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4. Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4.
Inspired by the many hydrolytically-active metallo enzymes encountered in nature, extensive studies have been performed on so-called metallo micelles. These investigations usually focus on mixed micelles of a common surfactant together with a special chelating surfactant that exhibits a high affinity for transition-metal ions. These aggregates can have remarkable catalytic effects on the hydrolysis of activated carboxylic acid esters, phosphate esters and amides. In these reactions the exact role of the metal ion is not clear and may vary from one system to another. However, there are strong indications that the major function of the metal ion is the coordination of hydroxide anion in the Stem region of the micelle where it is in the proximity of the micelle-bound substrate. The first report of catalysis of a hydrolysis reaction by me tall omi cell es stems from 1978. In the years that... [Pg.138]

Alkanolamides, a special subclass of substituted amides used as surfactants, are produced by three principal methods the reaction of fatty amides with formaldehyde, fatty acids with hydroxyalkylamines, and fatty esters with hydroxyalkylamines (37). A fatty amide and formalin can be heated in the presence of sodium hydroxide to yield 70—95% substituted alkanolamides (38,39). [Pg.184]

Water from screens, cleaners, washers, thickeners, and flotation cells contain relatively high levels of ink. These waters also contain valuable chemicals, ie, sodium hydroxide and surfactants. Recycle of this water can save up to 10% ia chemical costs. [Pg.9]

The principal constituents of rosin (qv) are abietic and related acids. Tall oil (qv) is a mixture of unsaturated fatty and aHcycHc acids of the abietic family. Refined tall oil may be high in rosin acids or unsaturated acids, depending on the refining process. Ethoxylates of rosin acids, eg, dehydro abietic acid, are similar to fatty acid ethoxylates in surfactant properties and manufacture, except for thek stabiHty to hydrolysis. No noticeable decomposition is observed when a rosin ester of this type is boiled for 15 min in 10% sulfuric acid or 25% sodium hydroxide (90). Steric hindrance of the carboxylate group associated with the aHcycHc moiety has been suggested as the cause of this unexpectedly great hydrolytic stabiHty. [Pg.250]

Ethylene oxide [75-21-8] was first prepared in 1859 by Wurt2 from 2-chloroethanol (ethylene chlorohydrin) and aqueous potassium hydroxide (1). He later attempted to produce ethylene oxide by direct oxidation but did not succeed (2). Many other researchers were also unsuccesshil (3—6). In 1931, Lefort achieved direct oxidation of ethylene to ethylene oxide using a silver catalyst (7,8). Although early manufacture of ethylene oxide was accompHshed by the chlorohydrin process, the direct oxidation process has been used almost exclusively since 1940. Today about 9.6 x 10 t of ethylene oxide are produced each year worldwide. The primary use for ethylene oxide is in the manufacture of derivatives such as ethylene glycol, surfactants, and ethanolamines. [Pg.450]

As with thickening, air flotation is enhanced by the addition of polymers. Flotation has been successfully used with wholly inorganic metal hydroxide sludges. Polymers and surfactants are used as additives. Engineering details on air flotation equipment has been developed by and is available from various equipment manufacturing companies. Liquid removed during thickening and flotation is usually returned to the head end of the plant. [Pg.2228]

Carbonates and bicarbonates are used as lower alkalinity adjuncts or substitutes for hydroxide. It has been suggested that hydroxide/carbonate systems are more resistant to carbonation during spraying than hydroxide-only solutions. Powder products blended with light sodium carbonate are much less hygroscopic, and the carbonate can be a useful carrier for liquid additives, such as surfactants and solvents. [Pg.284]

The analytical methods for a-sulfo fatty acid esters reported in the literature deal with the determination of the surfactants in different matrices like detergents or product mixtures from the fabrication. The methyl esters of a-sulfo fatty acids can be separated from a mixture of different surfactants together with sulfonated surfactants by adsorption on an anionic exchanger resin such as Dowex 1X2 or 1X8. Desorption from the exchanger resin is successful with sodium hydroxide (2%) in a 1 1 mixture of isopropanol and water [105]. [Pg.491]

When ethoxylated nonylphenol and polyethylene glycol is treated with a mixture of H2S04 and H3P04 and neutralized with an alkali metal hydroxide or amine, surfactants containing sulfate esters and phosphate esters are obtained which cause little corrosion of metals such as surfaces of laundering equipments and automobiles [55]. [Pg.563]

Xylan-based micro- and nanoparticles have been produced by simple coacervation (Garcia et al., 2001). In the study, sodium hydroxide and chloride acid or acetic acid were used as solvent and non-solvent, respectively. Also, xylan and surfactant concentrations and the molar ratio between sodium hydroxide and chloride acid were observed as parameters for the formation of micro- and nanoparticles by the simple coacervation technique (Garcia et al., 2001). Different xylan concentrations allowed the formation of micro- and nanoparticles. More precisely, microparticles were found for higher concentrations of xylan while nanopartides were produced for lower concentrations of the polymer solution. When the molar ratio between sodium hydroxide and chloride acid was greater than 1 1, the partides settled more rapidly at pH=7.0. Regarding the surfactant variations, an optimal concentration was found however, at higher ones a supernatant layer was observed after 30 days (Garda et al., 2001). [Pg.72]

A corrosion inhibitor with excellent film-forming and film-persistency characteristics is produced by first reacting Cig unsaturated fatty acids with maleic anhydride or fumaiic acid to produce the fatty acid Diels-Alder adduct or the fatty acid-ene reaction product [31]. This reaction product is further reacted in a condensation or hydrolyzation reaction with a polyalcohol to form an acid-anhydride ester corrosion inhibitor. The ester may be reacted with amines, metal hydroxides, metal oxides, ammonia, and combinations thereof to neutralize the ester. Surfactants may be added to tailor the inhibitor formulation to meet the specific needs of the user, that is, the corrosion inhibitor may be formulated to produce an oil-soluble, highly water-dispersible corrosion inhibitor or an oil-dispersible, water-soluble corrosion inhibitor. Suitable carrier solvents may be used as needed to disperse the corrosion inhibitor formulation. [Pg.91]

With chemical treatment, the natural surfactants in crude oil can be activated [1384]. This method has been shown to be effective for highly viscous crude oil from the Orinoco Belt that has been traditionally transported either by heating or diluting. The precursors to the surfactants are preferably the carboxylic acids that occur in the crude oil. The activation occurs by adding an aqueous buffer solution [1382,1383]. The buffer additive is either sodium hydroxide in combination with sodium bicarbonate or sodium silicate. Water-soluble amines also have been found to be suitable [1506]. [Pg.156]

Water-in-oil macroemulsions have been proposed as a method for producing viscous drive fluids that can maintain effective mobility control while displacing moderately viscous oils. For example, the use of water-in-oil and oil-in-water macroemulsions have been evaluated as drive fluids to improve oil recovery of viscous oils. Such emulsions have been created by addition of sodium hydroxide to acidic crude oils from Canada and Venezuela. In this study, the emulsions were stabilized by soap films created by saponification of acidic hydrocarbon components in the crude oil by sodium hydroxide. These soap films reduced the oil/water interfacial tension, acting as surfactants to stabilize the water-in-oil emulsion. It is well known, therefore, that the stability of such emulsions substantially depends on the use of sodium hydroxide (i.e., caustic) for producing a soap film to reduce the oil/water interfacial tension. [Pg.202]

Classical Aldol. Aldol reaction is an important reaction for creating carbon-carbon bonds. The condensation reactions of active methylene compounds such as acetophenone or cyclohexanone with aryl aldehydes under basic or acidic conditions gave good yields of aldols along with the dehydration compounds in water.237 The presence of surfactants led mainly to the dehydration reactions. The most common solvents for aldol reactions are ethanol, aqueous ethanol, and water.238 The two-phase system, aqueous sodium hydroxide-ether, has been found to be excellent for the condensation reactions of reactive aliphatic aldehydes.239... [Pg.267]


See other pages where Surfactant hydroxide is mentioned: [Pg.93]    [Pg.103]    [Pg.93]    [Pg.103]    [Pg.135]    [Pg.449]    [Pg.125]    [Pg.26]    [Pg.220]    [Pg.552]    [Pg.552]    [Pg.193]    [Pg.350]    [Pg.134]    [Pg.377]    [Pg.9]    [Pg.259]    [Pg.47]    [Pg.54]    [Pg.157]    [Pg.467]    [Pg.528]    [Pg.148]    [Pg.172]    [Pg.137]    [Pg.168]    [Pg.420]    [Pg.451]    [Pg.608]    [Pg.84]    [Pg.192]    [Pg.365]    [Pg.312]    [Pg.341]    [Pg.199]    [Pg.184]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Surfactant hydroxide emulsions

Surfactants layered double hydroxides

© 2024 chempedia.info