Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lighting, sodium

Carbonates and bicarbonates are used as lower alkalinity adjuncts or substitutes for hydroxide. It has been suggested that hydroxide/carbonate systems are more resistant to carbonation during spraying than hydroxide-only solutions. Powder products blended with light sodium carbonate are much less hygroscopic, and the carbonate can be a useful carrier for liquid additives, such as surfactants and solvents. [Pg.284]

Soft, silvery metal, very reactive. Reacts vigorously with water and air, must be stored under paraffin oil. Used in industry as a strong reducing agent. Reacts with equally aggressive chlorine to form harmless salt known to be essential to life. As all life stemmed from the sea, all life forms require sodium ions, for example, for the conduction of the nerves and for humans to think. In humans (70 kg), 100 g of sodium can be found (as ions). Easy detection makes flames yellow. Used in yellow lamps for street lighting. Sodium ions are widespread, for example, in glass, soap, mineral water, etc. [Pg.125]

Smith JL, Canham JE, Wells PA. Effect of phototherapy light, sodium bisulfite, and pH on vitamin stability in total parenteral nutrition admixtures. J Parent Enter Nutr 1988 12 394-402. [Pg.427]

The number of elements that are known to be biologically important comprises a relatively small fraction of the 109 known elements. Natural abundance limits the availability of the elements for such use. Molybdenum (Z = 42) is the heaviest metal, and iodine (Z = 53) is the heaviest nonmetal of known biological importance. The metals of importance in enzymes are principally those of the first transition series, and the other elements of importance are relatively light sodium, potassium, magnesium, calcium, carbon, nitrogen, phosphorus, oxygen, chlorine, and, of course, hydrogen. [Pg.472]

Outdoor Lighting Sodium vapor contained in a bulb or tube emits a brilliant yellow light when connected to a high-voltage source. Explain what is happening to the sodium atoms to produce this light. [Pg.242]

Sodium is also used for lighting. Sodium gives off a yellow color when it is heated, or when electricity is passed through its vapor. This light does not scatter in fog, which makes sodium ideal for producing street lamps and headlights on automobiles. Bulbs made from sodium also use less electricity. [Pg.63]

It is very important to make the right choice of the cuvette material for liquid and gas samples. This material must be transparent to the infrared light. Sodium chloride is the most often used material for the cuvettes and the optics of the infrared spectrometer. Other material such as special types of glass, quartz, aluminum oxide, calcium chloride, potassium bromide and so on are also used for special purposes. [Pg.120]

The method is performed using a microscope equipped with a microphotographic camera. To produce the monochromatic light, sodium or mercury spectral lamps or a He/Ne laser are used. A detailed description of the method is given by Tolansky... [Pg.319]

The sodium oxalate (Na2Cj04) produces a yellow flame. Analysis of the yellow-orange light (sodium) emission at 589 nm can be used to determine the flame temerature. [Pg.191]

C10H10N4O2S. White powder, which darkens on exposure to light m.p. 255-256 C. Prepared by condensing p-acet-amidobenzenesulphonyl chloride with 2-aminopyrimidine and subsequent hydrolysis. Soluble sulphadiazine is the sodium salt. Sulphadiazine is the least toxic of the more potent sulphonamides. ... [Pg.376]

Trichloroethylene is not attacked by dilute acids or alkalis, but when heated with sodium hydroxide under pressure it yields sodium gly-collate. In the presence of light and oxygen dichloroethanoyl chloride is formed, which can react with any moisture present to give small amounts of highly corrosive HCl. Numerous stabilizers have been patented. [Pg.404]

Place about i g. of the base in a test-tube, and cover with concentrated (about 20%) sodium hydroxide solution. Bring the mixture gently to the boil, keeping the test-tube lightly closed with the finger meanwhile to prevent undue escape of vapour.. A.s the solution boils a strong fishy odour of dimethylamine is detected, and white fumes form when the test-tube is held near an open bottle of concentrated... [Pg.206]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

If the iodide is deeply coloured, it may be decolourised with a little sodium bisulphite. A perfecUy colourless product can be obtained by distilling in the dark or in dilfusod light from a little silver powder. The iodide should be preserved in a bottle containing a short coil of copper wire made by wrapping coppor wire round a glass rod or tube. [Pg.287]

In a 1-litre three-necked flask, fitted with a mechanical stirrer, reflux condenser and a thermometer, place 200 g. of iodoform and half of a sodium arsenite solution, prepared from 54-5 g. of A.R. arsenious oxide, 107 g. of A.R. sodium hydroxide and 520 ml. of water. Start the stirrer and heat the flask until the thermometer reads 60-65° maintain the mixture at this temperature during the whole reaction (1). Run in the remainder of the sodium arsenite solution during the course of 15 minutes, and keep the reaction mixture at 60-65° for 1 hour in order to complete the reaction. AUow to cool to about 40-45° (2) and filter with suction from the small amount of solid impurities. Separate the lower layer from the filtrate, dry it with anhydrous calcium chloride, and distil the crude methylene iodide (131 g. this crude product is satisfactory for most purposes) under diminished pressure. Practically all passes over as a light straw-coloured (sometimes brown) liquid at 80°/25 mm. it melts at 6°. Some of the colour may be removed by shaking with silver powder. The small dark residue in the flask solidifies on cooling. [Pg.300]

Dissolve 5 g. of hydroxylamine hydrochloride in 10 ml. of water in a small conical flask and add a solution of 3 g. of sodium hydroxide in 10 ml. of water. Cool the solution in cold or ice water, and add 6 g. (7-6 ml.) of acetone slowly. Cool the flask, shake well, and leave overnight, during which time the oxime may crystallise out. If no crystals appear, cork the flask and shake vigorously when the acetoxime usually separates as colourless crystals. Filter the crystals at the pump, dry rapidly between filter paper (yield 2- 6 g.) and determine the m.p. (59°). Extract the filtrate with two 20 ml. portions of ether, and remove the solvent a further 0 - 5 g. of acetoxime (m.p. 60°) is obtained. Recrystallise from light petroleum, b.p. 40-60° CAUTION inflammable) to obtain the pure acetoxime, m.p. 60°. Acetoxime sublimes when left exposed to the air. [Pg.343]

Dissolve 2 5 g. of hydroxylamine hydrochloride and 4 g. of crystallised sodium acetate in 10 ml. of water in a small flask or in a test-tube. Warm the solution to about 40° and add 2 5 g. of cyclohexanone. Stopper the vessel securely with a cork and shake vigorously for a few minutes the oxime soon separates as a crystalline solid. Cool in ice, filter the crystals at the pump, and wash with a little cold water. RecrystaUise from light petroleum, b.p. 60-80°, and dry the crystals upon filter paper in the air. The yield of pure cycZohexanone oxime, m.p. 90°, is 2 -5 g. [Pg.343]

Method 1. Place in a test-tube or small flask 1-3 g. of glycerol and 30 ml. of 10 per cent, sodium hydroxide solution add gradually, with simultaneous shaking, 1-2 g. of benzoyl chloride. Stopper the vessel, shake for several minutes and allow to stand. Decant the solution from the pasty solid and wash the latter with cold water by decantation. Recrystallise the solid tribenzoate from dilute rectified (or methylated) spirit or from light petroleum, b.p. 40-60° the pure compound has m.p. 76°. [Pg.447]

The following is a modification of the process described and gives quite satisfactory results. Wash the crude mixture of benzonitrile and dibromopentane with sodium carbonate solution until the latter remains alkaline, and then with water. Distil it under reduced pressure and collect the fraction boiling up to 120°/18 mm. Dissolve this in twice its volume of light petroleum, b.p. 40-60°, which has previously been shaken with small volumes of concentrated sulphuric acid until the acid remains colourless. Shake the solution with 6 per cent, of its volume of concentrated sulphuric acid, allow to settle, and run ofi the sulphuric acid layer repeat the extraction until the acid is colourless or almost colourless. Wash successively with water, sodium carbonate solution and water, dry over anhydrous calcium chloride or calcium sulphate, and distil off the solvent. Distil the residue under diminished pressure and collect the 1 6-dibromopentane at 98- 100°/13 mm. [Pg.493]


See other pages where Lighting, sodium is mentioned: [Pg.350]    [Pg.483]    [Pg.1490]    [Pg.124]    [Pg.30]    [Pg.177]    [Pg.43]    [Pg.114]    [Pg.219]    [Pg.350]    [Pg.483]    [Pg.1490]    [Pg.124]    [Pg.30]    [Pg.177]    [Pg.43]    [Pg.114]    [Pg.219]    [Pg.68]    [Pg.158]    [Pg.184]    [Pg.360]    [Pg.283]    [Pg.2457]    [Pg.2760]    [Pg.65]    [Pg.723]    [Pg.165]    [Pg.174]    [Pg.192]    [Pg.337]    [Pg.488]    [Pg.491]    [Pg.492]   
See also in sourсe #XX -- [ Pg.15 , Pg.63 ]




SEARCH



High-pressure sodium lamps that light Wallens Ridge are visible for miles

Light from sodium ionization

Lighting High pressure sodium

Lighting sodium vapor

Sodium atom light emission from

Sodium atoms polarized light

Sodium carbonate, Na2CO3, “light

Sodium light absorption

Sodium lights

Sodium lights

Sodium vapor lights

© 2024 chempedia.info