Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Addition to buffer

In addition to buffer selection and effective pH control, a number of buffer additives can be used to optimize a separation (for more detailed discussion, see Section IV.A). [Pg.245]

Carbonyl compounds are an important class among organic molecules. Literature records several methods for their synthesis. However, there are very few methods to convert carbon-carbon unsaturation to carbonyl compounds. Hydroboration of acetylenes, followed by oxidation provides a novel method for carbonyl synthesis. It has been noted that regioselectivities achieved in the monohydroboration of internal acetylenes with thexylborane [1], disiamylbo-rane [1], dicyclohexylborane [1], and catecholborane [2] are similar to, but less pronounced than, that realized by 9-BBN [3]. The B-alkenyl-9-BBN derivatives undergo oxidation to the corresponding ketones or aldehydes under aprotic conditions with trimethylamine N-oxide [4, 5] or under protic conditions by inverse addition to buffered hydrogen peroxide [3]. The inverse addition, i.e., the slow addition of the B-alkenyl-9-BBN in THF to the buffered H O, suppresses the otherwise undesirable protonolysis reaction and favors the oxidation pathway to the desired aldehyde or ketone. [Pg.213]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

L-pyrenyldiazomethane to form stable, highly fluorescent L-pyrenyhnethyl monoesters (87). These esters have been analy2ed in human blood by ce combined with lif detection. To mimini e solute adsorption to the capillary wall, they were coated with polyacrjiamide, and hydroxypropyl methylceUulose and dimethylfoTTnamide were used as buffer additives to achieve reflable separations. Separation was performed in tris-citrate buffer, pH 6.4, under reversed polarity conditions. The assay was linear for semm MMA concentrations in the range of 0.1—200 p.mol/L. [Pg.247]

Dutch State Mines (Stamicarbon). Vapor-phase, catalytic hydrogenation of phenol to cyclohexanone over palladium on alumina, Hcensed by Stamicarbon, the engineering subsidiary of DSM, gives a 95% yield at high conversion plus an additional 3% by dehydrogenation of coproduct cyclohexanol over a copper catalyst. Cyclohexane oxidation, an alternative route to cyclohexanone, is used in the United States and in Asia by DSM. A cyclohexane vapor-cloud explosion occurred in 1975 at a co-owned DSM plant in Flixborough, UK (12) the plant was rebuilt but later closed. In addition to the conventional Raschig process for hydroxylamine, DSM has developed a hydroxylamine phosphate—oxime (HPO) process for cyclohexanone oxime no by-product ammonium sulfate is produced. Catalytic ammonia oxidation is followed by absorption of NO in a buffered aqueous phosphoric acid... [Pg.430]

In many patent orHterature descriptions, a stabilized chlorine dioxide solution or component is used or described. These stabilized chlorine dioxide solutions are in actuaHty a near neutral pH solution of sodium chlorite that may contain buffer salts or additives to obtain chlorite stabiHty in the pH 6—10 range. The uv spectra of these solutions is identical to that of sodium chlorite. These pH adjusted chlorite solutions can produce the active chlorine dioxide disinfectant from a number of possible organic or inorganic chemical and microbiological reactions that react, acidify, or catalyze the chlorite ion. [Pg.489]

In addition to polymeric support media, capillaries and flowing buffers have been used as support media for electrophoresis. Although these are not used as frequendy, there are definite advantages for certain types of samples and appHcations. [Pg.182]

In addition to temperature and flow rate, the retention and selectivity in reversed phase are controlled by (i) the concentration and type of organic modifier and (ii) the type, concentration and pH of the buffer. [Pg.48]

The buffer capacity of the pit fluid is equal to the change in alkalinity of the system per unit change of pH. Figure 4-491 shows the buffer intensity (capacity) of a 0.1 M carbonate pit fluid. Calculating the initial buffer capacity of the pit fluid allows for prediction of the pH change upon introduction of live acid and also any addition of buffer, such as sodium bicarbonate, required to neutralize the excess hydrogen ions. [Pg.1355]

The third main type of alkalising agent is the alkali phosphate. Sodium mono-, di- and triphosphates in appropriate proportions may be used to achieve the desired conditions. In addition to their use to prevent scale phosphates have the advantage for corrosion control of being pH buffers so that they limit the attainable concentration of free hydroxide ion in solution and so restrain the scope for corrosion of the caustic type. [Pg.848]

The procedure is experimentally simple, and the workup involves only the destruction of the traces of hydrogen peroxide with manganese dioxide and evaporation of the hexamethyldisiloxane. Pyridine additives serve to buffer the highly acidic rhenium species and to shut down the detrimental acid-catalyzed epoxideopening pathways. The scope of this transformation is best appreciated through the examples presented in Table 12.2 [28],... [Pg.451]

Conjugate Addition. To a solution of 1.5 mmol of lithium dialkylcuprate at — 25 CC is added 1 mmol of methyl ( )-3-[(25,45,55)-3-benzyloxycarbonyl-4-methyl-5-phenyl-2-oxazolidinyl]-propenoate dissolved in 1 mL of dry diethyl ether. After 30 ntin at — 25 C, the mixture is treated with an aq NH3/NH4C1 pH 8 buffer solution and then stirred at r.t. for 15 min. After diethyl ether extraction, the organic layers are dried over Na,S()4 and filtered and the solvent is evaporated under reduced pressure. The crude products are checked by H- and l3C-NMR analyses in order to determine the diastereomer ratios (g 95 5) and then purified by flash chromatography (hexane/ethyl acetate 80 20) yield 70-72%. [Pg.896]

A third mechanism of protodeboronation has been detected in the reaction of benzeneboronic acids with water at pH 2-6.7625. In addition to the acid-catalysed reaction described above, a reaction whose rate depended specifically on the concentration of hydroxide ion was found. In a preliminary investigation with aqueous malonate buffers (pH 6.7) at 90 °C, 2-, 4-, and 2,6-di-methoxybenzeneboronic acids underwent deboronation and followed first-order kinetics. A secondary reaction produced an impurity which catalysed the deboronation, but this was unimportant during the initial portions of the kinetic runs. [Pg.294]

A catalytic system may contain active components other than H30+, H2O, and OH-. Weak acids and bases may also be efficient catalysts. These include, of course, both components of the buffer. Their contributions are in addition to the three terms seen before. If they are designated as BH+ and B, the rate constant is... [Pg.233]


See other pages where Addition to buffer is mentioned: [Pg.335]    [Pg.278]    [Pg.335]    [Pg.278]    [Pg.501]    [Pg.933]    [Pg.61]    [Pg.290]    [Pg.392]    [Pg.385]    [Pg.249]    [Pg.518]    [Pg.518]    [Pg.457]    [Pg.483]    [Pg.65]    [Pg.299]    [Pg.474]    [Pg.291]    [Pg.500]    [Pg.48]    [Pg.220]    [Pg.46]    [Pg.21]    [Pg.289]    [Pg.295]    [Pg.495]    [Pg.497]    [Pg.29]    [Pg.94]    [Pg.110]    [Pg.362]    [Pg.16]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Addition of Strong Acids or Bases to Buffers

Buffer additives

© 2024 chempedia.info