Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfuric acid measurements

Nitrenium ions have been observed following flash photolysis of 4-ethoxy- and 4-methoxyphenyl azides in aqueous solution and a series of polyfluorinated phenyl azides in acidic media, such as acetonitrile containing sulfuric acid. Measured lifetimes of the phenylnitrenium ions varied from 1 ps up to milliseconds. [Pg.328]

One of the factors limiting the rate of heterogeneous reactions such as (9), (10) and (11) is the availability of the second reactant at the surface. For a trace species like HCl, this may be determined by the solubility of the species in sulfuric acid. Measurements of the effective Henry s law constant for HCl in sulfuric acid solutions between 50 wt.% and 60 wt.% [24] have been made. Because the solubility is low, the range of temperatures and compositions over which the Knudsen cell experiment could be performed is limited. However, extrapolation to room temperature measurements [28] looks reasonable, and the agreement with the results of other groups [29,30] is good. [Pg.259]

Figure 2-23. Rate of corrosion of copper and copper alloys in boiling sulfuric acid measured by means of 24-48 immersion tests. Data from N. W. Polan (1987). Data for one nickel-based alloy is also shown. Figure 2-23. Rate of corrosion of copper and copper alloys in boiling sulfuric acid measured by means of 24-48 immersion tests. Data from N. W. Polan (1987). Data for one nickel-based alloy is also shown.
The overall reactivity of the 4- and 5-positions compared to benzene has been determined by competitive methods, and the results agreed with kinetic constants established by nitration of the same thiazoles in sulfuric acid at very low concentrations (242). In fact, nitration of alkylthiazoles in a mixture of nitric and sulfuric acid at 100°C for 4 hr gives nitro compounds in preparative yield, though some alkylthiazoles are oxidized. Results of competitive nitrations are summarized in Table III-43 (241, 243). For 2-alkylthiazoles, reactivities were too low to be measured accurately. [Pg.381]

Carbonate is measured by evolution of carbon dioxide on treating the sample with sulfuric acid. The gas train should iaclude a silver acetate absorber to remove hydrogen sulfide, a magnesium perchlorate drying unit, and a CO2-absorption bulb. Sulfide is determined by distilling hydrogen sulfide from an acidified slurry of the sample iato an ammoniacal cadmium chloride solution, and titrating the precipitated cadmium sulfide iodimetrically. [Pg.175]

BriunstedSuper Clds. In the 1960s a class of acids hundreds of millions times stronger than mineral acids was discovered acids stronger than 100% sulfuric acid are caHed superacids (211). The determination of acidity by pH measurement does not hold for very concentrated acid solution. [Pg.564]

Determination of Lignin Content. Lignin content in plants (wood) is determined by direct or indirect methods (21). The direct method includes measurement of acid-insoluble (ie, Klason) lignin after digesting wood with 72% sulfuric acid to solubilize carbohydrates (22). The Klason lignin contents of representative lignifted materials are shown in Table 2. [Pg.140]

Colorimetric Method. A finely powdered sample treated with sulfuric acid, hydrobromic acid [10035-10-6] and bromine [7726-95-6] gives a solution that when adjusted to pH 4 may be treated with dithi one [60-10-6] ia / -hexane [110-54-3] to form mercuric dithi2onate [14783-59-6] (20). The resultant amber-colored solution has a color iatensity that can be compared against that of standard solutions to determine the mercury concentration of the sample. Concentrations below 0.02 ppm have been measured by this method. [Pg.108]

Fat Content of Milk. Raw milk as well as many dairy products are routinely analyzed for their fat content. The Babcock test, or one of its modifications, has been a standard direct measure for many years and is being replaced by indirect means, particularly for production operations. The Babcock test employs a bottle with an extended and caHbrated neck, milk plus sulfuric acid [7664-93-9] to digest the protein, and a centrifuge to concentrate the fat into the caHbrated neck. The percentage of fat in the milk is read direcflv from the neck of the bottle with a divider or caHper, rea ding to... [Pg.364]

The hberated iodine is measured spectrometricaHy or titrated with Standard sodium thiosulfate solution (I2 +28203 — 2 1 VS Og following acidification with sulfuric acid buffers are sometimes employed. The method requires measurement of the total gas volume used in the procedure. The presence of other oxidants, such as H2O2 and NO, can interfere with the analysis. The analysis is also technique-sensitive, since it can be affected by a number of variables, including temperature, time, pH, iodide concentration, sampling techniques, etc (140). A detailed procedure is given in Reference 141. [Pg.503]

Phosphoric acid, aside from its acidic behavior, is relatively unreactive at room temperature. It is sometimes substituted for sulfuric acid because of its lack of oxidising properties (see SuLFURic ACID AND SULFURTRIOXIDe). The reduction of phosphoric acid by strong reducing agents, eg, H2 or C, does not occur to any measurable degree below 350—400°C. At higher temperatures, the acid reacts with most metals and their oxides. Phosphoric acid is stronger than acetic, oxaUc, siUcic, and boric acids, but weaker than sulfuric, nitric, hydrochloric, and chromic acids. [Pg.324]

Gas streams can be analy2ed for ammonia by bubbling a measured quantity of the gas through a boric acid solution to absorb the ammonia. The solution is then titrated against sulfuric acid. This analysis is applicable only if other constituents in the gas stream do not react with boric acid. [Pg.357]

Nitrogen oxide sampling is simpler. This gas is drawn into an evacuated sample flask containing dilute sulfuric acid and hydrogen peroxide. The flask is shaken and allowed to stand for 16 h before the flask pressure is measured. Then the solution is made alkaline, and the nitrogen oxides are deterrnined by the phenoldisulfonic colorimetric test. [Pg.301]

In industrial production of acid-modified starches, a 40% slurry of normal com starch or waxy maize starch is acidified with hydrochloric or sulfuric acid at 25—55°C. Reaction time is controlled by measuring loss of viscosity and may vary from 6 to 24 hs. For product reproducibiUty, it is necessary to strictly control the type of starch, its concentration, the type of acid and its concentration, the temperature, and time of reaction. Viscosity is plotted versus time, and when the desired amount of thinning is attained the mixture is neutralized with soda ash or dilute sodium hydroxide. The acid-modified starch is then filtered and dried. If the starch is washed with a nonaqueous solvent (89), gelling time is reduced, but such drying is seldom used. Acid treatment may be used in conjunction with preparation of starch ethers (90), cationic starches, or cross-linked starches. Acid treatment of 34 different rice starches has been reported (91), as well as acidic hydrolysis of wheat and com starches followed by hydroxypropylation for the purpose of preparing thin-hoiling and nongelling adhesives (92). [Pg.344]

Sulfur [7704-34-9] S, a nonmetallic element, is the second element of Group 16 (VIA) of the Periodic Table, coming below oxygen and above selenium. In massive elemental form, sulfur is often referred to as brimstone. Sulfur is one of the most important taw materials of the chemical industry. It is of prime importance to the fertilizer industry (see Fertilizers) and its consumption is generally regarded as one of the best measures of a nation s industrial development and economic activity (see Sulfur compounds Sulfurremoval and recovery Sulfuric acid and sulfur trioxide). [Pg.115]

The Reich test is used to estimate sulfur dioxide content of a gas by measuring the volume of gas required to decolorize a standard iodine solution (274). Equipment has been developed commercially for continuous monitoring of stack gas by measuring the near-ultraviolet absorption bands of sulfur dioxide (275—277). The deterrnination of sulfur dioxide in food is conducted by distilling the sulfur dioxide from the acidulated sample into a solution of hydrogen peroxide, foUowed by acidimetric titration of the sulfuric acid thus produced (278). Analytical methods for sulfur dioxide have been reviewed (279). [Pg.147]

Figures 5 and 6 present the electrical conductivity of sulfuric acid solutions (51,52). For sulfuric acid solutions in the 90—100% H2SO concentration range, the electrical conductivity measurements reported by Reference 52 are beheved to be the best values other conductivity data are also available... Figures 5 and 6 present the electrical conductivity of sulfuric acid solutions (51,52). For sulfuric acid solutions in the 90—100% H2SO concentration range, the electrical conductivity measurements reported by Reference 52 are beheved to be the best values other conductivity data are also available...
In the early 1970s, air pollution requirements led to the adoption of the double contact or double absorption process, which provides overall conversions of better than 99.7%. The double absorption process employs the principle of intermediate removal of the reaction product, ie, SO, to obtain favorable equiUbria and kinetics in later stages of the reaction. A few single absorption plants are stiU being built in some areas of the world, or where special circumstances exist, but most industriali2ed nations have emission standards that cannot be achieved without utili2ing double absorption or tad-gas scmbbers. A discussion of sulfuric acid plant air emissions, control measures, and emissions calculations can be found in Reference 98. [Pg.183]

Historically, consumption of sulfuric acid has been a good measure of a country s degree of iadustrialization and also a good iadicator of general busiaess conditions. This is far less vaUd ia the 1990s, because of the heavy sulfuric acid usage by the phosphate fertilizer iadustry. Of total U.S. sulfuric acid consumption ia 1994 of 42.5 x 10 metric tons, over 70% went iato phosphate fertilizers as compared to 45% ia 1970 and 64% ia 1980 (144). Uses other than fertilizer have grown only slowly or declined. This trend is expected to continue. Production and consumption trends ia the United States are shown ia Tables 9 and 10. [Pg.190]

Measurement and specification of nitrates or other nitrogen oxide compounds in sulfuric acid is a complex subject. The difficulty occurs because nitrogen oxides are usually present both as nitrous and nitric compounds, predominantiy in the nitrous form. Hence, analytical procedures specific for nitrates only do not give a complete analysis. [Pg.192]

A procedure to measure both types of nitrogen oxide compounds at the same time involves development of a pink color by mixing FeSO with sulfuric acid, followed by measurement or comparison of color intensity. This general type of procedure and the possible alternatives ate discussed in References 148—150. [Pg.192]

Descriptions of sulfuric acid analytical procedures not specified by ASTM are available (32,152). Federal specifications also describe the requited method of analysis. Concentrations of 78 wt % and 93 wt % H2SO4 are commonly measured indirectly by determining specific gravity. Higher acid concentrations are normally determined by titration with a base, or by sonic velocity or other physical property for plant control. Sonic velocity has been found to be quite accurate for strength analysis of both filming and nonfuming acid. [Pg.192]

Fluoride. A fluoride concentration of ca 1 mg/L is helpful in preventing dental caries. Eluoride is deterrnined potentiometrically with an ion-selective electrode. A buffer solution of high total ionic strength is added to the solution to eliminate variations in sample ionic strength and to maintain the sample at pH 5—8, the optimum range for measurement. (Cyclohexylenedinitrilo)tetraacetic acid (CDTA) is usually added to the buffer solution to complex aluminum and thereby prevent its interference. If fluoroborate ion is present, the sample should be distilled from a concentrated sulfuric acid solution to hydrolyze the fluoroborate to free fluoride prior to the electrode measurement (26,27). [Pg.231]

Phosphate. Phosphoms occurs in water primarily as a result of natural weathering, municipal sewage, and agricultural mnoff The most common form in water is the phosphate ion. A sample containing phosphate can react with ammonium molybdate to form molybdophosphoric acid (H2P(Mo202q)4). This compound is reduced with stannous chloride in sulfuric acid to form a colored molybdenum-blue complex, which can be measured colorimetrically. SiUca and arsenic are the chief interferences. [Pg.231]

Some water samples contain phosphoms forms other than phosphate, eg, polyphosphate, hexametaphosphate, and organic phosphates. These forms can be hydrolyzed to phosphate in hot sulfuric acid solution and deterrnined by the preceding method. The more refractory organic phosphates require digestion in a sulfuric acid—ammonium persulfate solution. Ion chromatography can also be used to measure at 2 to 10 ppb (21). [Pg.231]

Two colorimetric methods are recommended for boron analysis. One is the curcumin method, where the sample is acidified and evaporated after addition of curcumin reagent. A red product called rosocyanine remains it is dissolved in 95 wt % ethanol and measured photometrically. Nitrate concentrations >20 mg/L interfere with this method. Another colorimetric method is based upon the reaction between boron and carminic acid in concentrated sulfuric acid to form a bluish-red or blue product. Boron concentrations can also be deterrnined by atomic absorption spectroscopy with a nitrous oxide—acetjiene flame or graphite furnace. Atomic emission with an argon plasma source can also be used for boron measurement. [Pg.231]

The activity of any ion, a = 7m, where y is the activity coefficient and m is the molaHty (mol solute/kg solvent). Because it is not possible to measure individual ionic activities, a mean ionic activity coefficient, 7, is used to define the activities of all ions in a solution. The convention used in most of the Hterature to report the mean ionic activity coefficients for sulfuric acid is based on the assumption that the acid dissociates completely into hydrogen and sulfate ions. This assumption leads to the foUowing formula for the activity of sulfuric acid. [Pg.572]

The activity coefficients of sulfuric acid have been deterrnined independentiy by measuring three types of physical phenomena cell potentials, vapor pressure, and freeting point. A consistent set of activity coefficients has been reported from 0.1 to 8 at 25°C (14), from 0.1 to 4 and 5 to 55°C (18), and from 0.001 to 0.02 m at 25°C (19). These values are all based on cell potential measurements. The activity coefficients based on vapor pressure measurements (20) agree with those from potential measurements when they are corrected to the same reference activity coefficient. [Pg.573]

The temperature dependence of the open circuit voltage has been accurately determined (22) from heat capacity measurements (23). The temperature coefficients are given in Table 2. The accuracy of these temperature coefficients does not depend on the accuracy of the open circuit voltages at 25°C shown in Table 1. Using the data in Tables 1 and 2, the open circuit voltage can be calculated from 0 to 60°C at concentrations of sulfuric acid from 0.1 to 13.877 m. [Pg.573]

The mechanisms of lead corrosion in sulfuric acid have been studied and good reviews of the Hterature are available (27—30). The main techniques used in lead corrosion studies have been electrochemical measurements, x-ray diffraction, and electron microscopy. More recendy, laser Raman spectroscopy and photoelectrochemistry have been used to gain new insight into the corrosion process (30,31). [Pg.574]


See other pages where Sulfuric acid measurements is mentioned: [Pg.533]    [Pg.533]    [Pg.641]    [Pg.389]    [Pg.251]    [Pg.663]    [Pg.533]    [Pg.533]    [Pg.641]    [Pg.389]    [Pg.251]    [Pg.663]    [Pg.97]    [Pg.681]    [Pg.1160]    [Pg.444]    [Pg.249]    [Pg.287]    [Pg.378]    [Pg.140]    [Pg.364]    [Pg.221]    [Pg.276]    [Pg.52]    [Pg.201]    [Pg.232]    [Pg.578]   


SEARCH



Acidity measurement

Acids measurement

Measuring acidity

Sulfur measure

© 2024 chempedia.info