Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons 338 Subject

Phosphoric acid fuel cells (PAFCs) are commercially available. Several hundred PAFC units, most of the order of 200 kW, are operating worldwide. PAFCs are realizing efficiencies of up to 40%. The only byproducts of PAFC operation are water and heat. However, enriched hydrogen fuel must be produced by subjecting hydrocarbon resources (natural gas or... [Pg.472]

Terpene resins are old, in fact, the oldest reference to polymerization was recorded in 1789 wherein turpentine was treated with sulfuric acid, More modern milestones are a U.S. patent issued to Emile Rouxeville in 1909 for subjecting hydrocarbons such as turpentine to sulfuric acid to produce a resin which was said to resemble various India rubbers. Then in 1933 aluminum chloride catalysis for terpene polymerization was patented by the Gulf Refining Company. Later in 1950, a fundamental publication by Roberts and Day appeared in the non-patent literature and anticipated much of the later work. Commercial terpene resins produced for adhesive applications resulted from modification of disclosed processes, catalysts and terpene feedstocks. [Pg.396]

When subjected to an electron bombardment whose energy level is much higher than that of hydrocarbon covalent bonds (about 10 eV), a molecule of mass A/loses an electron and forms the molecular ion, the bonds break and produce an entirely new series of ions or fragments . Taken together, the fragments relative intensities constitute a constant for the molecule and can serve to identify it this is the basis of qualitative analysis. [Pg.48]

Liquid chromatography is preceded by a precipitation of the asphaltenes, then the maltenes are subjected to chromatography. Although the separation between saturated hydrocarbons and aromatics presents very few problems, this is not the case with the separation between aromatics and resins. In fact, resins themselves are very aromatic and are distinguished more by their high heteroatom content (this justifies the terms, polar compounds or N, S, 0 compounds , also used to designate resins). [Pg.83]

The potential advantages of LPG concern essentially the environmental aspects. LPG s are simple mixtures of 3- and 4-carbon-atom hydrocarbons with few contaminants (very low sulfur content). LPG s contain no noxious additives such as lead and their exhaust emissions have little or no toxicity because aromatics are absent. This type of fuel also benefits often enough from a lower taxation. In spite of that, the use of LPG motor fuel remains static in France, if not on a slightly downward trend. There are several reasons for this situation little interest from automobile manufacturers, reluctance on the part of automobile customers, competition in the refining industry for other uses of and fractions, (alkylation, etherification, direct addition into the gasoline pool). However, in 1993 this subject seems to have received more interest (Hublin et al., 1993). [Pg.230]

Metallic sodium. This metal is employed for the drying of ethers and of saturated and aromatic hydrocarbons. The bulk of the water should first be removed from the liquid or solution by a preliminary drying with anhydrous calcium chloride or magnesium sulphate. Sodium is most effective in the form of fine wire, which is forced directly into the liquid by means of a sodium press (see under Ether, Section II,47,i) a large surface is thus presented to the liquid. It cannot be used for any compound with which it reacts or which is affected by alkalis or is easily subject to reduction (due to the hydrogen evolved during the dehydration), viz., alcohols, acids, esters, organic halides, ketones, aldehydes, and some amines. [Pg.143]

More information has appeared concerning the nature of the side reactions, such as acetoxylation, which occur when certain methylated aromatic hydrocarbons are treated with mixtures prepared from nitric acid and acetic anhydride. Blackstock, Fischer, Richards, Vaughan and Wright have provided excellent evidence in support of a suggested ( 5.3.5) addition-elimination route towards 3,4-dimethylphenyl acetate in the reaction of o-xylene. Two intermediates were isolated, both of which gave rise to 3,4-dimethylphenyl acetate in aqueous acidic media and when subjected to vapour phase chromatography. One was positively identified, by ultraviolet, infra-red, n.m.r., and mass spectrometric studies, as the compound (l). The other was less stable and less well identified, but could be (ll). [Pg.222]

In reverse-phase chromatography, which is the more commonly encountered form of HPLC, the stationary phase is nonpolar and the mobile phase is polar. The most common nonpolar stationary phases use an organochlorosilane for which the R group is an -octyl (Cg) or -octyldecyl (Cig) hydrocarbon chain. Most reverse-phase separations are carried out using a buffered aqueous solution as a polar mobile phase. Because the silica substrate is subject to hydrolysis in basic solutions, the pH of the mobile phase must be less than 7.5. [Pg.580]

Eigure 2 shows that even materials which are rather resistant to oxidation ( 2/ 1 0.1) are consumed to a noticeable degree at high conversions. Also the use of plug-flow or batch reactors can offer a measurable improvement in efficiencies in comparison with back-mixed reactors. Intermediates that cooxidize about as readily as the feed hydrocarbon (eg, ketones with similar stmcture) can be produced in perhaps reasonable efficiencies but, except at very low conversions, are subject to considerable loss through oxidation. They may be suitable coproducts if they are also precursors to more oxidation-resistant desirable materials. Intermediates which oxidize relatively rapidly (/ 2 / i — 3-50 eg, alcohols and aldehydes) are difficult to produce in appreciable amounts, even in batch or plug-flow reactors. Indeed, for = 50, to isolate 90% or more of the intermediate made, the conversion must... [Pg.337]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

Ozone in the gas phase can be deterrnined by direct uv spectrometry at 254 nm via its strong absorption. The accuracy of this method depends on the molar absorptivity, which is known to 1% interference by CO, hydrocarbons, NO, or H2O vapor is not significant. The method also can be employed to measure ozone in aqueous solution, but is subject to interference from turbidity as well as dissolved inorganics and organics. To eliminate interferences, ozone sometimes is sparged into the gas phase for measurement. [Pg.503]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

Wax usually refers to a substance that is a plastic solid at ambient temperature and that, on being subjected to moderately elevated temperatures, becomes a low viscosity hquid. Because it is plastic, wax usually deforms under pressure without the appHcation of heat. The chemical composition of waxes is complex all of the products have relatively wide molecular weight profiles, with the functionaUty ranging from products that contain mainly normal alkanes to those that are mixtures of hydrocarbons and reactive functional species. [Pg.314]

Petroleum Waxes. Waxes derived from petroleum are hydrocarbons of three types paraffin [64742-43-4] (clay-treated) sernimicrocrystaUine or intermediate and microcrystalHne [64742-42-3] (clay-treated). SernimicrocrystaUine waxes are not generally marketed as such (7). Others include acid-treated, chemically neutrali2ed, and hydrotreated and paraffin and hydrocarbon waxes, untreated. The quaHty and quantity of the wax separated from the cmde oil depends on the source of the cmde oil and the degree of refining to which it has been subjected prior to wax separation. Petroleum waxes are produced in massive quantities throughout the world. Subject to the wax content in the cmde, paraffin and, to a substantially lesser degree, microcrystalHne wax are produced in almost all countries of the world that refine cmde oil. Production capacity in the United States and imports for the years 1990 to 1995 are Hsted in Table 2. Canada suppHes over 50% of the petroleum wax imported into the United States (3). [Pg.315]

Ground turbine fuels are not subject to the constraints of an aircraft operating at reduced pressures of altitude. The temperature of fuel in ground tanks varies over a limited range, eg, 10—30°C, and the vapor pressure is defined by a safety-handling factor such as flash point temperature. Volatile fuels such as naphtha (No. 0-GT) are normally stored in a ground tank equipped with a vapor recovery system to minimise losses and meet local air quaUty codes on hydrocarbons. [Pg.415]

Benzene is a natural component of petroleum, but the amount of benzene present ia most cmde oils is small, often less than 1.0% by weight (34). Therefore the recovery of benzene from cmde oil is uneconomical and was not attempted on a commercial scale until 1941. To add further compHcations, benzene cannot be separated from cmde oil by simple distillation because of azeotrope formation with various other hydrocarbons. Recovery is more economical if the petroleum fraction is subjected to a thermal or catalytic process that iacreases the concentration of benzene. [Pg.40]

Methanation. Since 1902, when Sabatier discovered that carbon monoxide could be hydrogenated to methane [74-82-8] the methanation reaction (eq. 12) has been the subject of intense investigation (47,48) (see Hydrocarbons, C —C ). [Pg.52]

Materials of Construction. GeneraHy, carbon steel is satisfactory as a material of construction when handling propylene, chlorine, HCl, and chlorinated hydrocarbons at low temperatures (below 100°C) in the absence of water. Nickel-based aHoys are chiefly used in the reaction area where resistance to chlorine and HCl at elevated temperatures is required (39). Elastomer-lined equipment, usuaHy PTFE or Kynar, is typicaHy used when water and HCl or chlorine are present together, such as adsorption of HCl in water, since corrosion of most metals is excessive. Stainless steels are to be avoided in locations exposed to inorganic chlorides, as stainless steels can be subject to chloride stress-corrosion cracking. Contact with aluminum should be avoided under aH circumstances because of potential undesirable reactivity problems. [Pg.34]

The diacids are characterized by two carboxyHc acid groups attached to a linear or branched hydrocarbon chain. AUphatic, linear dicarboxyhc acids of the general formula HOOC(CH2) COOH, and branched dicarboxyhc acids are the subject of this article. The more common aUphatic diacids (oxaUc, malonic, succinic, and adipic) as weU as the common unsaturated diacids (maleic acid, fumaric acid), the dimer acids (qv), and the aromatic diacids (phthaUc acids) are not discussed here (see Adipic acid Maleic anhydride, maleic acid, and fumaric acid Malonic acid and derivatives Oxalic acid Phthalic acid and OTHERBENZENE-POLYCARBOXYLIC ACIDS SucciNic ACID AND SUCCINIC ANHYDRIDE). The bihinctionahty of the diacids makes them versatile materials, ideally suited for a variety of condensation polymerization reactions. Several diacids are commercially important chemicals that are produced in multimillion kg quantities and find appHcation in a myriad of uses. [Pg.60]

The principal mbbers, eg, natural, SBR, or polybutadiene, being unsaturated hydrocarbons, are subjected to sulfur vulcanization, and this process requires certain ingredients in the mbber compound, besides the sulfur, eg, accelerator, zinc oxide, and stearic acid. Accelerators are catalysts that accelerate the cross-linking reaction so that reaction time drops from many hours to perhaps 20—30 min at about 130°C. There are a large number of such accelerators, mainly organic compounds, but the most popular are of the thiol or disulfide type. Zinc oxide is required to activate the accelerator by forming zinc salts. Stearic acid, or another fatty acid, helps to solubilize the zinc compounds. [Pg.467]

Some authorities question whether dmnkeimess can result from the inhalation of ethyl alcohol vapors. Experience has demonstrated that in any event such intoxication is indeed rare (281). There is no concrete evidence that the inhalation of ethyl alcohol vapor will cause cirrhosis. Liver function is definitely impaired during alcohol intoxication (282), making the subject more susceptible to the toxic effects of chlorinated hydrocarbons. [Pg.414]

Luminous Flames Luminosity conventionally refers to soot radiation it is important when combustion occurs under such conditions that the hydrocarbons in the flame are subject to heat in the absence of sufficient air well mixed on a molecular scale. Because soot parti-... [Pg.581]


See other pages where Hydrocarbons 338 Subject is mentioned: [Pg.79]    [Pg.347]    [Pg.661]    [Pg.899]    [Pg.246]    [Pg.573]    [Pg.67]    [Pg.35]    [Pg.164]    [Pg.89]    [Pg.334]    [Pg.510]    [Pg.161]    [Pg.270]    [Pg.22]    [Pg.233]    [Pg.335]    [Pg.357]    [Pg.42]    [Pg.237]    [Pg.555]    [Pg.222]    [Pg.278]    [Pg.507]    [Pg.108]    [Pg.526]    [Pg.459]    [Pg.2244]    [Pg.28]   
See also in sourсe #XX -- [ Pg.149 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 ]




SEARCH



Subject aliphatic hydrocarbons

Subject aromatic hydrocarbons

Subject hydrocarbon polymers

© 2024 chempedia.info