Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent recovery water treatment

Use Decolorizing of sugar, water and air purification, solvent recovery, waste treatment, removal of sulfur dioxide from stack gases and clean rooms, deodorant, removal of jet fumes from airports, catalyst for natural-gas purification, brewing, chromium electroplating, air- conditioning. [Pg.232]

Other Uses. The quantity of coal used for purposes other than combustion or processing is quite small (2,6). Coal, especially anthracite, has estabHshed markets for use as purifying and filtering agents in either the natural form or converted to activated carbon (see Carbon). The latter can be prepared from bituminous coal or coke, and is used in sewage treatment, water purification, respirator absorbers, solvent recovery, and in the food industry. Some of these markets are quite profitable and new uses are continually being sought for this material. [Pg.237]

Solvent Recovery The largest current industrial use of pei vapo-ration is the treatment of mixed organic process streams that have become contaminated with small (10 percent) quantities of water. Pei vaporation becomes vei y attractive when dehydrating streams down to less than 1 percent water. The advantages result from the small operating costs relative to distillation and adsorption. Also, distillation is often impossible, since azeotropes commonly form in multicomponent organic/water mixtures. [Pg.2194]

Skladany, G.J., J.M. Thomas, G. Fisher and R. Ramachandran. The Design, Economics and Operation of a Biological Treatment System for Ketone Contaminated Ground and Solvent Recovery Process Waters. Presented at the 42nd Annual Purdue Industrial Waste Conference, Purdue University, West Lafayette, Indiana, 1987. [Pg.169]

Remember that this technology is versatile, and is applied equally well to solvent recovery and pollution control applications in gas as well as liquid systems. Let s now focus attention on the applications in water treatment. [Pg.414]

Activated Carbon for Process Water Treatment Activated Carbon from CPL Carbon Link - Activated carbon from CPL Carbon Link for liquid and gas phase purification by adsorption. Activated carbons for all applications including chemical, water, air, solvent recovery, gold recovery, food, automotive, industrial, catalysis.. http //www.activated-carbon.com. [Pg.442]

In-plant management practices may often control the volume and quality of the treatment system influent. Volume reduction can be attained by process wastewater segregation from noncontact water, by recycling or reuse of noncontact water, and by the modification of plant processes. Control of spills, leakage, washdown, and storm runoff can also reduce the treatment system load. Modifications may include the use of vacuum pumps instead of steam ejectors, recycling caustic soda solution rather than discharging it to the treatment system, and incorporation of a more efficient solvent recovery system. [Pg.552]

Extraction efficiency is not the only factor to be examined in the choice of solvent or reagent for a particular application. Environmental, as well as economic considerations must be taken into account. Solvents such as benzene and chloroform (which have solubilities of 0.07 and 0.82 parts per 100 parts of water) might be preferred for extractive efficiency, but their use would result in large losses to the aqueous phase. Not only would this be expensive, but it would be undesirable for reasons of health the toxic organo lead salts would be removed, but an equally toxic organic solvent would be added to the effluent. Addition of a solvent recovery unit subsequent to the extraction step might render the technique uneconomic (relative to alternative effluent treatment techniques). [Pg.397]

One can also recognize that application of sufficient pressure (above the equilibrium osmotic pressure n) to the right-hand chamber in (7.67) must cause the solvent flow to reverse, resulting in extrusion of pure solvent from solution. This is the phenomenon of reverse osmosis, an important industrial process for water desalination. Reverse osmosis is also used for other purification processes, such as removal of H20 from ethanol beyond the azeotropic limit of distillation (Section 7.3.4). Reverse osmosis also finds numerous applications in wastewater treatment, solvent recovery, and pollution control processes. [Pg.260]

In membrane extraction, the treated solution and the extractant/solvent are separated from each other by means of a solid or liquid membrane. The technique is applied primarily in three areas wastewater treatment (e.g., removal of pollutants or recovery of trace components), biotechnology (e.g., removal of products from fermentation broths or separation of enantiomers), and analytical chemistry (e.g., online monitoring of pollutant concentrations in wastewater). Figure 18a shows schematically an industrial hollow fiber-based pertraction unit for water treatment, according to the TNO technology (263). The unit can be integrated with a him evaporator to enable the release of pollutants in pure form (Figure 18b). [Pg.300]

Steam regeneration is most commonly applied to activated carbon that has been used in the removal and/or recovery of solvents from gases. At volatile organic compound (VOC) concentration levels from 500 to 15,000 ppm, recovery of the VOC from the stream used for regeneration is economically justified. Below about 500 ppm, recovery is not economically justifiable, but environmental concerns often dictate adsorption followed by destruction. While activated carbon is also used to remove similar chemicals from water and wastewater, regeneration by steam is not usual. The reason is that the water-treatment carbon contains 1 to 5 kg of water per kg of adsorbent that must be removed by drying before regeneration or an excessive amount of superheated steam will be needed. In water treatment. [Pg.1369]

The commercial membrane separation processes are offered in the areas of nitrogen production and waste treatment applications (1). Developing membrane applications in oil milling and edible oil processing are (1) solvent recovery, (2) degumming, (3) free fatty acid removal, (4) catalyst recovery, (5) recovery of wash water from second centrifuge, (6) coohng tower water recovery, (7) protein purification, and (8) tocopherol separation. [Pg.2841]

Historically, a classic example of an evaporation process is the production of table salt. Maple syrup has traditionally been produced by evaporation of sap. Concentration of black liquor from pulp and paper processing constitutes a large-volume present application. Evaporators are also employed in such disparate uses as desalination of seawater, nuclear fuel reprocessing, radioactive waste treatment,preparation of boiler feed waters, and production of sodium hydroxide. They are used to concentrate stillage waste in fermentation processes, waste brines, inorganic salts in fertilizer production, and rinse liquids used in metal finishing, as well as in the production of sugar, vitamin C, caustic soda, dyes, and juice concentrates, and for solvent recovery in pharmaceutical processes. [Pg.1600]


See other pages where Solvent recovery water treatment is mentioned: [Pg.186]    [Pg.132]    [Pg.1547]    [Pg.95]    [Pg.322]    [Pg.58]    [Pg.888]    [Pg.611]    [Pg.64]    [Pg.459]    [Pg.193]    [Pg.91]    [Pg.15]    [Pg.322]    [Pg.263]    [Pg.440]    [Pg.471]    [Pg.286]    [Pg.193]    [Pg.206]    [Pg.132]    [Pg.1923]    [Pg.2848]    [Pg.22]    [Pg.22]    [Pg.129]    [Pg.183]    [Pg.1853]    [Pg.65]    [Pg.2827]    [Pg.534]   
See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.14 , Pg.15 , Pg.18 , Pg.21 , Pg.26 , Pg.100 , Pg.106 , Pg.107 , Pg.121 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.166 , Pg.167 , Pg.168 , Pg.169 , Pg.170 , Pg.171 , Pg.182 , Pg.214 , Pg.241 , Pg.243 , Pg.246 ]




SEARCH



Solvent recovery

Solvent, water

Water recovery

Water solvent recovery

Water treatment

© 2024 chempedia.info