Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water solvent recovery

Active carbons are unique and versatile adsorbents, and they are used extensively for the removal of undesirable odor, color, taste, and other organic and inorganic impurities from domestic and industrial waste water, solvent recovery, air purification in inhabited places, restaurants, food processing, and chemical industries in the removal of color from various syrups and pharmaceutical products in air pollution control from industrial and automobile exhausts in the purification of many chemical, pharmaceutical, and food products and in a variety of gas-phase applications. They are being increasingly used in the field of hydrometaUurgy for the recovery of gold, silver, and other metals, and as catalysts and catalyst supports. They are also well known for their applications in medicine for the removal of toxins and bacterial infections in certain ailments. Nearly 80% (-300,000 tons/yr) of the total active carbon is consumed for liquid-phase applications, and the gas-phase applications consume about 20% of the total production. [Pg.2]

The bottoms from the solvent recovery (or a2eotropic dehydration column) are fed to the foremns column where acetic acid, some acryflc acid, and final traces of water are removed overhead. The overhead mixture is sent to an acetic acid purification column where a technical grade of acetic acid suitable for ester manufacture is recovered as a by-product. The bottoms from the acetic acid recovery column are recycled to the reflux to the foremns column. The bottoms from the foremns column are fed to the product column where the glacial acryflc acid of commerce is taken overhead. Bottoms from the product column are stripped to recover acryflc acid values and the high boilers are burned. The principal losses of acryflc acid in this process are to the aqueous raffinate and to the aqueous layer from the dehydration column and to dimeri2ation of acryflc acid to 3-acryloxypropionic acid. If necessary, the product column bottoms stripper may include provision for a short-contact-time cracker to crack this dimer back to acryflc acid (60). [Pg.154]

Formex pro-cess, Snam-progetti /V-formyl-morph o-line (FM) water is added to the FM to increase its se-lectivity and also to avoid high reboiler temperatures during solvent recovery by distillation 40 perforated-tray ex-tractor, FM density at 1.15 aids phase separation low corrosion allows use of carbon steel equipment... [Pg.78]

DifficultSepa.ra.tions, Difficult separations, characterized by separation factors in the range 0.95 to 1.05, are frequentiy expensive because these involve high operating costs. Such processes can be made economically feasible by reducing the solvent recovery load (260) this approach is effective, for example, in the separation of m- and -cresol, Hnoleic and abietic components of tall oil (qv), and the production of heavy water (see Deuteriumand TRITIUM, deuterium). [Pg.80]

Water is continuously added to the last extraction bath and flows countercurrenfly to filament travel from bath to bath. Maximum solvent concentration of 15—30% is reached in the coagulation bath and maintained constant by continuously removing the solvent—water mixture for solvent recovery. Spinning solvent is generally recovered by a two-stage process in which the excess water is initially removed by distillation followed by transfer of cmde solvent to a second column where it is distilled and transferred for reuse in polymer manufacture. [Pg.309]

In typical processes, the gaseous effluent from the second-stage oxidation is cooled and fed to an absorber to isolate the MAA as a 20—40% aqueous solution. The MAA may then be concentrated by extraction into a suitable organic solvent such as butyl acetate, toluene, or dibutyl ketone. Azeotropic dehydration and solvent recovery, followed by fractional distillation, is used to obtain the pure product. Water, solvent, and low boiling by-products are removed in a first-stage column. The column bottoms are then fed to a second column where MAA is taken overhead. Esterification to MMA or other esters is readily achieved using acid catalysis. [Pg.253]

Solvent Recovery. A mixture of methanol and methyl acetate is obtained after saponification. The methyl acetate can be sold as a solvent or converted back into acetic acid and methanol using a cationic-exchange resin such as a cross-linked styrene—sulfonic acid gel (273—276). The methyl acetate and methanol mixture is separated by extractive distillation using water or ethylene glycol (277—281). Water is preferred if the methyl acetate is to be hydroly2ed to acetic acid. The resulting acetic acid solution is concentrated by extraction or a2eotropic distillation. [Pg.485]

Other Uses. The quantity of coal used for purposes other than combustion or processing is quite small (2,6). Coal, especially anthracite, has estabHshed markets for use as purifying and filtering agents in either the natural form or converted to activated carbon (see Carbon). The latter can be prepared from bituminous coal or coke, and is used in sewage treatment, water purification, respirator absorbers, solvent recovery, and in the food industry. Some of these markets are quite profitable and new uses are continually being sought for this material. [Pg.237]

Solvent Recovery The largest current industrial use of pei vapo-ration is the treatment of mixed organic process streams that have become contaminated with small (10 percent) quantities of water. Pei vaporation becomes vei y attractive when dehydrating streams down to less than 1 percent water. The advantages result from the small operating costs relative to distillation and adsorption. Also, distillation is often impossible, since azeotropes commonly form in multicomponent organic/water mixtures. [Pg.2194]

In recent years, the use of solvent-borne adhesives has been seriously restricted. Solvents are, in general, volatile, flammable and toxic. Further, solvent may react with other airborne contaminants contributing to smog formation and workplace exposure. These arguments have limited the use of solvent-bome adhesives by different national and European regulations. Although solvent recovery systems and afterburners can be effectively attached to ventilation equipment, many factories are switching to the use of water-borne rubber adhesives, hot melts or 100% solids reactive systems, often at the expense of product performance or labour efficiency. [Pg.577]

Another example in the polymers industry is illustrated in Figure 17, which is a process aimed at the batch drying of waste residue with solvent recovery. In this application liquid or viscous waste solutions are pumped into a batch dryer where they are dried under vacuum to a solid granular residue. Vaporized water and solvent are recovered by condensation and then separated by gravity. The process scheme is flexible, offering a range of temperatures and vacuum levels for treating... [Pg.110]

The volatile solvents recoverable by the activated carbon system or any other system are nearly all organic, and many of them form flammable or explosive mixtures with air. Such mixtures may lie between upper and lower explosive limits. The activated carbon system can avoid the explosive range by staying well below the lowest percentage of vapor which is still explosive it functions well at very low concentrations. The system also recovers solvents efficiently even in the presence of water the recovery efficiency is high (98 percent and 99 percent are not unusual) it may be fully automatic. The annual maintenance charge rarely exceeds 5 percent of the cost of equipment. The recovery expense may be as low as 0.2 cent per pound in some installations it rarely exceeds 1 cent per pound. [Pg.301]

Skladany, G.J., J.M. Thomas, G. Fisher and R. Ramachandran. The Design, Economics and Operation of a Biological Treatment System for Ketone Contaminated Ground and Solvent Recovery Process Waters. Presented at the 42nd Annual Purdue Industrial Waste Conference, Purdue University, West Lafayette, Indiana, 1987. [Pg.169]

Remember that this technology is versatile, and is applied equally well to solvent recovery and pollution control applications in gas as well as liquid systems. Let s now focus attention on the applications in water treatment. [Pg.414]

Activated Carbon for Process Water Treatment Activated Carbon from CPL Carbon Link - Activated carbon from CPL Carbon Link for liquid and gas phase purification by adsorption. Activated carbons for all applications including chemical, water, air, solvent recovery, gold recovery, food, automotive, industrial, catalysis.. http //www.activated-carbon.com. [Pg.442]

Solvent recovery with adsorption is most feasible when the reusable solvent is valuable and is readily separated from the regeneration agent. When steam-regenerated activated-carbon adsorption is employed, the solvent should be immiscible with water. If more than one compound is to be recycled, the compounds should be easily separated or reused as a mixture. Only very large solvent users can afford the cost of solvent purification by distillation. ... [Pg.1260]

In case of solvent recovery some units feature a water separator permitting recycling of the recovered solvent. Adsorption processes are discussed in Chapter 17. [Pg.91]


See other pages where Water solvent recovery is mentioned: [Pg.18]    [Pg.2194]    [Pg.52]    [Pg.18]    [Pg.1950]    [Pg.2445]    [Pg.18]    [Pg.2426]    [Pg.2198]    [Pg.405]    [Pg.243]    [Pg.18]    [Pg.2194]    [Pg.52]    [Pg.18]    [Pg.1950]    [Pg.2445]    [Pg.18]    [Pg.2426]    [Pg.2198]    [Pg.405]    [Pg.243]    [Pg.503]    [Pg.7]    [Pg.44]    [Pg.281]    [Pg.282]    [Pg.388]    [Pg.156]    [Pg.360]    [Pg.529]    [Pg.1097]    [Pg.1449]    [Pg.429]    [Pg.95]    [Pg.301]    [Pg.190]    [Pg.140]    [Pg.733]    [Pg.888]    [Pg.742]    [Pg.173]    [Pg.1048]    [Pg.827]    [Pg.888]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Solvent recovery

Solvent recovery water treatment

Solvent, water

Water recovery

© 2024 chempedia.info