Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent flow

The solvent flow rate to the distillation usually can be varied... [Pg.82]

A typical loop injector showing the sampling position with pressurized solvent flowing through one loop onto the column and the sample solution placed in the other loop at atmospheric pressure. Rotation of the loop carrier through 180° puts the sample into the liquid flow at high pressure with only momentary change in pressure in the system. [Pg.251]

In some instances, the plasma flame can go out altogether if the levels of sample or other contaminants rise too high. This problem has led to the development of a wide variety of gasAiquid separators and/or desolvation chambers that condition the sample before it is introduced to the flame. These separators and chambers reduce the amount of solvent flowing into the flame. [Pg.397]

These results arise from considering the same polymer molecule under different conditions of permeability to the streamlines of solvent flow. [Pg.611]

Since the total gas and Hquid flow rates per unit cross-sectional area vary throughout the tower (Fig. 5) rigorous material balances should be based on the constant iaert gas and solvent flow rates and respectively, and expressed ia terms of mole ratios and X. A balance around the upper... [Pg.24]

Fig. 5. Arrangement of multistage contactors where F = feed flow (A-rich), R = raffinate flow, 5 = solvent flow (B-rich), and E = extract flow, (a)... Fig. 5. Arrangement of multistage contactors where F = feed flow (A-rich), R = raffinate flow, 5 = solvent flow (B-rich), and E = extract flow, (a)...
The De Danske Sukkerfabriker (DDS) diffuser extractor (Fig. 6) is a relatively simple version of this family of machines, employing a double screw rotating in a vessel mounted at about 10° to the horizontal. The double screw is used to transport the soHds up the gradient of the sheU, while solvent flows down the gradient. Equipment using a single screw in a horizontal sheU for countercurrent extraction of soHds under pressure has been described (19). [Pg.93]

Due to possible environmental problems with acetone, new technologies are being developed for the production of deoiled lecithins involving treatment of Hpid mixtures with supercritical gases or supercritical gas mixtures (10—12). In this process highly viscous cmde lecithin is fed into a separation column at several levels. The supercritical extraction solvent flows through the column upward at a pressure of 8 MPa (80 bar) and temperature between 40 and 55°C. The soy oil dissolves together with a small amount of lecithin. [Pg.100]

Reverse Osmosis. Osmosis is the flow of solvent through a semipermeable membrane, from a dilute solution to a concentrated solution. This flow results from the driving force created by the difference in pressure between the two solutions. Osmotic pressure is the pressure that must be added to the concentrated solution side to stop the solvent flow through the membrane. Reverse osmosis is the process of reversing the flow, forcing water through a membrane from a concentrated solution to a dilute solution to produce pure water. Figure 2 illustrates the processes of osmosis and reverse osmosis. [Pg.261]

Because there is no azeotrope, these mixtures could be separated without adding a solvent. This, however, would be a difficult and expensive separation. Thus there is no minimum feed ratio (minimum solvent flow) and the only way to determine the optimal solvent-to-process feed ratio is by determining the sequence cost over a range of feed ratios. The best reflux ratios are again 1.2—1.5 times the minimum. [Pg.189]

The variable that has the most significant impact on the economics of an extractive distillation is the solvent-to-feed (S/F) ratio. For closeboiling or pinched nonazeotropic mixtures, no minimum-solvent flow rate is required to effect the separation, as the separation is always theoretically possible (if not economical) in the absence of the solvent. However, the extent of enhancement of the relative volatihty is largely determined by the solvent concentration and hence the S/F ratio. The relative volatility tends to increase as the S/F ratio increases. Thus, a given separation can be accomplished in fewer equihbrium stages. As an illustration, the total number of theoretical stages required as a function of S/F ratio is plotted in Fig. 13-75 7 for the separation of the nonazeotropic mixture of vinyl acetate and ethyl acetate using phenol as the solvent. [Pg.1316]

The value of K is one of the main parameters used to establish the minimum ratio of extraction solvent to feed solvent that can be employed in an extraction process. For exanmle, if the partition ratio K is 4, then a countercurrent extractor woula require 0.25 kg or more of extraction-solvent flow to remove all the solute from 1 kg of feed-solvent flow. [Pg.1450]

In case A the solvents are immiscible, so the rate of feed solvent alone in the feed stream F is the same as the rate of feed solvent alone in the raffinate stream R. In like manner, the rate of extraction solvent alone is the same in the stream entering S as in the extract stream leaving E (Fig. 15-12). The ratio of extraction-solvent to feed-solvent flow rates is therefore S /F = E /R. A material balance can be written around the feed end of the extrac tor down to any stage n (see Fig. 15-12) and then rearranged to a McCabe-Thiele type of operating line with a slope of F /S [Eq. (15-11)]. [Pg.1461]

Batch Percolators The batch tank is not unlike a big nutsche filter it is a large circiilar or rectangiilar tank with a false bottom. The solids to be leached are dumped into the tank to a uniform depth. They are sprayed with solvent until their solute content is reduced to an economic minimum and are then excavated. Countercurrent flow of the solvent through a series of tanks is common, with fresh solvent entering the tank containing most nearly exhausted material. In a typical ore-dressing operation the tanks are 53 by 20 by 5.5 m (175 by 67 by 18 ft) and extract about 8200 Mg (9000 U.S. tons) of ore on a 13-day cycle. Some tanks operate under pressure, to contain volatile solvents or increase the percolation rate. A series of pressure tanks operating with countercurrent solvent flow is called a diffusion battery. [Pg.1673]

Tray Classifier A hybrid like the screw-conveyor classifier, the tray classifier rakes pulp up the sloping bottom of a tank while solvent flows in the opposite direction. The solvent is forced by a baffle to the bottom of the tank at the lower end before it overflows. The sohds must be rugged enough to stand the stress of raking. [Pg.1676]

Esi-ms measurements were performed on a Agilent LC M,SD system with the following operational parameters capillary voltage 4.0 kV, cone voltage, 50 V and solvent flow (methanol - water, 50% v/v) 0.3 inL/min. All esi mass specttal data in the positive ion mode were acquired and processed using HP Chem.Station software. The concenttation of aluminum was 0.5 mmol dm while that of mfx were varied in the interval 0.5-1.0 mmol dm. The pH values were pH 4.0, 6.0, 7.2 and 8.5. The specttum obtained at A1 to mfx concenttation ratio 1 2 and pH 4.0 is shown in Fig. 1. [Pg.364]

The process described above is usually called osmosis and this usually imphes a flow of fluid in one direction or the other. If the permeating species, usually called the solvent, flows from the pure compartment to the mixture compartment then it is called osmosis pure and simple. This seems the natural process since the solvent dilutes the solution and this involves an increase in entropy and/or a decrease in free energy, so the resultant flow is spontaneous and the system tends to equihbrium. However, the starting conditions may be such that the difference of pressure... [Pg.776]

Packing Column Solvent Flow Rate Temp ... [Pg.397]


See other pages where Solvent flow is mentioned: [Pg.83]    [Pg.159]    [Pg.212]    [Pg.212]    [Pg.84]    [Pg.30]    [Pg.60]    [Pg.82]    [Pg.90]    [Pg.391]    [Pg.547]    [Pg.403]    [Pg.187]    [Pg.187]    [Pg.1316]    [Pg.1359]    [Pg.1460]    [Pg.1465]    [Pg.1674]    [Pg.2001]    [Pg.2185]    [Pg.383]    [Pg.254]    [Pg.608]    [Pg.779]    [Pg.414]    [Pg.419]    [Pg.584]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



© 2024 chempedia.info