Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium spectroscopy

Meier C and Engel V 1995 Pump-probe ionization spectroscopy of a diatomic molecule sodium molecule as a prototype example Femtosecond Chemistry Proc. Berlin Conf Femtosecond Chemistry (Berlin, March 1993) (Weinheim Verlag Chemie)... [Pg.1090]

Fluoroacetic acid [144-49-OJ, FCH2COOH, is noted for its high, toxicity to animals, including humans. It is sold in the form of its sodium salt as a rodenticide and general mammalian pest control agent. The acid has mp, 33°C bp, 165°C heat of combustion, —715.8 kJ/mol( —171.08 kcal/mol) (1) enthalpy of vaporization, 83.89 kJ /mol (20.05 kcal/mol) (2). Some thermodynamic and transport properties of its aqueous solutions have been pubHshed (3), as has the molecular stmcture of the acid as deterrnined by microwave spectroscopy (4). Although first prepared in 1896 (5), its unusual toxicity was not pubhshed until 50 years later (6). The acid is the toxic constituent of a South African plant Dichapetalum i mosum better known as gifirlaar (7). At least 24 other poisonous plant species are known to contain it (8). [Pg.307]

Analyses of alloys or ores for hafnium by plasma emission atomic absorption spectroscopy, optical emission spectroscopy (qv), mass spectrometry (qv), x-ray spectroscopy (see X-ray technology), and neutron activation are possible without prior separation of hafnium (19). Alternatively, the combined hafnium and zirconium content can be separated from the sample by fusing the sample with sodium hydroxide, separating silica if present, and precipitating with mandelic acid from a dilute hydrochloric acid solution (20). The precipitate is ignited to oxide which is analy2ed by x-ray or emission spectroscopy to determine the relative proportion of each oxide. [Pg.443]

In aqueous solution, all the sodium peroxoborates dissociate for the most part into boric acid, or its anion, and hydrogen peroxide. Peroxoborate species are also present in these solutions, depending on the pH and the concentration for the species type. The nature of these species has been extensively examined by classical physicochemical methods (13), by nmr, and by Raman spectroscopy (14—17). Both monomeric and polymeric species are usually present. There is some evidence (18) suggesting that these peroxoborates are more reactive than hydrogen peroxide alone under similar conditions. [Pg.92]

Commercial Hquid sodium alumiaates are normally analyzed for total alumiaa and for sodium oxide by titration with ethylene diaminetetraacetic acid [60-00-4] (EDTA) or hydrochloric acid. Further analysis iacludes the determiaation of soluble alumiaa, soluble siHca, total iasoluble material, sodium oxide content, and carbon dioxide. Aluminum and sodium can also be determiaed by emission spectroscopy. The total iasoluble material is determiaed by weighing the ignited residue after extraction of the soluble material with sodium hydroxide. The sodium oxide content is determiaed ia a flame photometer by comparison to proper standards. Carbon dioxide is usually determiaed by the amount evolved, as ia the Underwood method. [Pg.140]

Rubidium metal is commeicially available in essentially two grades, 99 + % and 99.9 + %. The main impurities ate other alkali metals. Rubidium compounds are available in a variety of grades from 99% to 99.99 + %. Manufacturers and suppliers of mbidium metal and mbidium compounds usually supply a complete certificate of analysis upon request. Analyses of metal impurities in mbidium compounds are determined by atomic absorption or inductive coupled plasma spectroscopy (icp). Other metallic impurities, such as sodium and potassium, are determined by atomic absorption or emission spectrograph. For analysis, mbidium metal is converted to a compound such as mbidium chloride. [Pg.280]

The sodium hydroxide is titrated with HCl. In a thermometric titration (92), the sibcate solution is treated first with hydrochloric acid to measure Na20 and then with hydrofluoric acid to determine precipitated Si02. Lower sibca concentrations are measured with the sibcomolybdate colorimetric method or instmmental techniques. X-ray fluorescence, atomic absorption and plasma emission spectroscopies, ion-selective electrodes, and ion chromatography are utilized to detect principal components as weU as trace cationic and anionic impurities. Eourier transform infrared, ft-nmr, laser Raman, and x-ray... [Pg.11]

Tungsten is usually identified by atomic spectroscopy. Using optical emission spectroscopy, tungsten in ores can be detected at concentrations of 0.05—0.1%, whereas x-ray spectroscopy detects 0.5—1.0%. ScheeHte in rock formations can be identified by its luminescence under ultraviolet excitation. In a wet-chemical identification method, the ore is fired with sodium carbonate and then treated with hydrochloric acid addition of 2inc, aluminum, or tin produces a beautiful blue color if tungsten is present. [Pg.284]

Internal surfaces were covered with a tan deposit layer up to 0.033 in. (0.084 cm) thick. The deposits were analyzed by energy-dispersive spectroscopy and were found to contain 24% calcium, 17% silicon, 16% zinc, 11% phosphorus, 7% magnesium, 2% each sodium, iron, and sulfur, 1% manganese, and 18% carbonate by weight. The porous corrosion product shown in Fig. 13.11B contained 93% copper, 3% zinc, 3% tin, and 1% iron. Traces of sulfur and aluminum were also found. Near external surfaces, up to 27% of the corrosion product was sulfur. [Pg.305]

Benzyioxycarbonyi chioride (Cbz-Ci, benzyi cbioroformate) [501-53-1] M 170.6, b 103 /20mm, d 1.195, n 1.5190. Commercial material is better than 95% pure and may contain some toluene, benzyl alcohol, benzyl chloride and HCl. After long storage (e.g. two years at 4 , Greenstein and Winitz [The Chemistry of the Amino Acids Voi 2 p. 890, J Wiley and Sons NY, 1961] recommended that the liquid should be flushed with a stream of dry air, filtered and stored over sodium sulfate to remove CO2 and HCl which are formed by decomposition. It may further be distilled from an oil bath at a temperature below 85 because Thiel and Dent [Annalen 301 257 1898] stated that benzyioxycarbonyi chloride decarboxylates to benzyl chloride slowly at 100 and vigorously at 155 . Redistillation at higher vac below 85 yields material which shows no other peaks than those of benzyioxycarbonyi chloride by NMR spectroscopy. LACHRYMATORY and TOXIC. [Pg.130]

Atomic absorption spectroscopy of VPD solutions (VPD-AAS) and instrumental neutron activation analysis (INAA) offer similar detection limits for metallic impurities with silicon substrates. The main advantage of TXRF, compared to VPD-AAS, is its multielement capability AAS is a sequential technique that requires a specific lamp to detect each element. Furthermore, the problem of blank values is of little importance with TXRF because no handling of the analytical solution is involved. On the other hand, adequately sensitive detection of sodium is possible only by using VPD-AAS. INAA is basically a bulk analysis technique, while TXRF is sensitive only to the surface. In addition, TXRF is fast, with an typical analysis time of 1000 s turn-around times for INAA are on the order of weeks. Gallium arsenide surfaces can be analyzed neither by AAS nor by INAA. [Pg.355]

The use of azide reagents is also important for the synthesis of cyclic sulfur(VI)-nitrogen systems. The reaction of SOCI2 with sodium azide in acetonitrile at -35°C provides a convenient preparation of the trimeric sulfanuric chloride [NS(0)C1]3 (Eq. 2.16). " Thionyl azide, SO(N3)2 is generated by the heterogeneous reaction of thionyl chloride vapour with silver azide (Eq. 2.17). This thermally unstable gas was characterized in situ by photoelectron spectroscopy. The phenyl derivative of the six-membered ring [NS(0)Ph]3 can be prepared from lithium azide and PhS(0)Cl. ... [Pg.23]

N-Substituted 5,6-dihydro-2//-1,2-oxazines were found to be significantly more stable than their N-unsubstituted analogs and could be distinguished from the corresponding 4H isomers using H NMR spectroscopy. Thus, it was shown that oxazinium salt 80 isomerizes on treatment with sodium carbonate to tricyclic... [Pg.277]

Into a mixture of 1.6 g of 2-amino-4-methylpyrlmidine with 10 ml of glacial acetic acid is slowly added 2.13 g of concentrated sulfuric acid. A mixture of 2.4 g of 2-formyl-1-methyl-5-nitroimidazole in 20 ml of glacial acetic acid is slowly added to the mixture of the pyrimidine under stirring. The reaction mixture is maintained at a temperature of about 55°C for 4 hours. The resultant mixture is then diluted with 200 ml of distilled water and neutralized with a saturated aqueous solution of sodium bicarbonate. A brownish-yellow precipitate (MP 232° to 235°C) is formed and recovered. The product is analyzed by infrared spectroscopy and is found to conform to 2-amino-4-[2-(1-methyl-5-nitro-2-imidazolyI)vinyl] pyrimidine. [Pg.115]

In the many reports on photoelectron spectroscopy, studies on the interface formation between PPVs and metals, focus mainly on the two most commonly used top electrode metals in polymer light emitting device structures, namely aluminum [55-62] and calcium [62-67]. Other metals studied include chromium [55, 68], gold [69], nickel [69], sodium [70, 71], and rubidium [72], For the cases of nickel, gold, and chromium deposited on top of the polymer surfaces, interactions with the polymers are reported [55, 68]. In the case of the interface between PPV on top of metallic chromium, however, no interaction with the polymer was detected [55]. The results concerning the interaction between chromium and PPV indicates two different effects, namely the polymer-on-metal versus the metal-on-polymer interface formation. Next, the PPV interface formation with aluminum and calcium will be discussed in more detail. [Pg.78]

Azido-3-methoxypyridazines 1 are transformed into 6,7-dimethoxy-477-1,2.5-triazepines 3 by irradiation in the presence of sodium methoxide. The reaction proceeds via the unstable 277-tautomers 2, which were detected by NMR spectroscopy and can be trapped as the 2-acetyl derivatives 4 by adding acetyl chloride to the crude photolysate.371 The synthesis fails for azidopyridazines lacking the 3-methoxy substituent. [Pg.470]

Naphtho analogues, naphtho[2,l-e]tetrazolo[l,5-6][l,2,4]triazine, naph-tho[l,2-e]tetrazolo[l,5-b][l,2,4]triazine, and naphtho[2,3-e]tetrazolo[l,5-Zj][1, 2,4]triazine, were prepared (82JOC3168 84JOC3199) by cyclization of the respective hydrazine with sodium nitrite in acetic acid or by azide displacement of a leaving group. Elucidation of the site of annulation of the tetrazole ring was accomplished by X-ray analysis and l3C-NMR spectroscopy (Scheme 189). [Pg.150]


See other pages where Sodium spectroscopy is mentioned: [Pg.360]    [Pg.1787]    [Pg.2474]    [Pg.390]    [Pg.240]    [Pg.166]    [Pg.431]    [Pg.300]    [Pg.337]    [Pg.486]    [Pg.288]    [Pg.292]    [Pg.206]    [Pg.600]    [Pg.600]    [Pg.791]    [Pg.792]    [Pg.163]    [Pg.178]    [Pg.297]    [Pg.372]    [Pg.536]    [Pg.226]    [Pg.305]    [Pg.140]    [Pg.170]    [Pg.84]    [Pg.334]    [Pg.7]    [Pg.27]    [Pg.539]    [Pg.779]    [Pg.781]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Nuclear magnetic resonance spectroscopy, water-sodium

© 2024 chempedia.info