Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pump-and-probe

A RIKES experunent is essentially identical to that of CW CARS, except the probe laser need not be tunable. The probe beam is linearly polarized at 0° (—>), while the polarization of the tunable pump beam is controlled by a linear polarizer and a quarter waveplate. The pump and probe beams, whose frequency difference must match the Raman frequency, are overlapped in the sample (just as in CARS). The strong pump beam propagating tlirough a nonlinear medium induces an anisotropic change in the refractive mdices seen by tlie weaker probe wave, which alters the polarization of a probe beam [96]. The signal field is polarized orthogonally to the probe laser and any altered polarization may be detected as an increase in intensity transmitted tlirough a crossed polarizer. When the pump beam is Imearly polarized at 45° y), contributions... [Pg.1207]

FigureBl.5.16 Rotational relaxation of Coumarin 314 molecules at the air/water interface. The change in the SFI signal is recorded as a fimction of the time delay between the pump and probe pulses. Anisotropy in the orientational distribution is created by linearly polarized pump radiation in two orthogonal directions in the surface. (After [90].)... FigureBl.5.16 Rotational relaxation of Coumarin 314 molecules at the air/water interface. The change in the SFI signal is recorded as a fimction of the time delay between the pump and probe pulses. Anisotropy in the orientational distribution is created by linearly polarized pump radiation in two orthogonal directions in the surface. (After [90].)...
Pump-probe absorption experiments on the femtosecond time scale generally fall into two effective types, depending on the duration and spectral width of the pump pulse. If tlie pump spectrum is significantly narrower in width than the electronic absorption line shape, transient hole-burning spectroscopy [101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112 and 113] can be perfomied. The second type of experiment, dynamic absorption spectroscopy [57, 114. 115. 116. 117. 118. 119. 120. 121 and 122], can be perfomied if the pump and probe pulses are short compared to tlie period of the vibrational modes that are coupled to the electronic transition. [Pg.1979]

The main cost of this enlianced time resolution compared to fluorescence upconversion, however, is the aforementioned problem of time ordering of the photons that arrive from the pump and probe pulses. Wlien the probe pulse either precedes or trails the arrival of the pump pulse by a time interval that is significantly longer than the pulse duration, the action of the probe and pump pulses on the populations resident in the various resonant states is nnambiguous. When the pump and probe pulses temporally overlap in tlie sample, however, all possible time orderings of field-molecule interactions contribute to the response and complicate the interpretation. Double-sided Feymuan diagrams, which provide a pictorial view of the density matrix s time evolution under the action of the laser pulses, can be used to detenuine the various contributions to the sample response [125]. [Pg.1980]

With the short pulses available from modem lasers, femtosecond time resolution has become possible [7, 71, 72 and 73], Producing accurate time delays between pump and probe pulses on this time scale represents a... [Pg.2127]

Figure C3.2.13. Orientation in a photoinitiated electron transfer from dimetliylaniline (DMA) solvent to a coumarin solute (C337). Change in anisotropy, r, reveals change in angle between tire pumped and probed electronic transition moments. From [46],... Figure C3.2.13. Orientation in a photoinitiated electron transfer from dimetliylaniline (DMA) solvent to a coumarin solute (C337). Change in anisotropy, r, reveals change in angle between tire pumped and probed electronic transition moments. From [46],...
Other early work, which continues to this day, involved vibronic relaxation [6] of large colored molecules such as chrysene [19], pyrene [20] and perylene [21], due to the relative ease of using visible or near-UV light to pump and probe these systems (see example C3.5.6.5 below). [Pg.3034]

With broad-band pulses, pumping and probing processes become more complicated. With a broad-bandwidth pulse it is easy to drive fundamental and overtone transitions simultaneously, generating a complicated population distribution which depends on details of pulse stmcture [75], Broad-band probe pulses may be unable to distinguish between fundamental and overtone transitions. For example in IR-Raman experiments with broad-band probe pulses, excitation of the first overtone of a transition appears as a fundamental excitation with twice the intensity, and excitation of a combination band Q -t or appears as excitation of the two fundamentals 1761. [Pg.3040]

In the continuous wave (CW) experimental setup a sample is constantly illuminated by a probe beam and the steady state change in the transmission is detected (see Fig. 7-1). An argon ion laser has been used to generate the pump beam and the probe beam was from an incandescent lamp (tungsten or others), producing a broad spectrum (0.5 to 5 pm) [6]. Both pump and probe beams are directed onto the sample film and the transmitted probe light is collected, filtered through a monochromator, and detected by a photodetector. Both the pump and the probe... [Pg.108]

In many respects the time-resolved pump-probe technique is similar to the CW counterpart. The use of pulsed laser light permits direct probing of both the magnitude of the PA and its dynamics. The experimental arrangement is practically the same as for the CW version, i.e., both pump and probe beams are focused and overlapped onto same spot on a sample. In addition, the pump and probe pulses are synchronized so that the lime interval t between them is constant and confined to a certain time range (in our case up to 3 ns). [Pg.111]

A critical difference between the transient and CW measurements is that while the CW probe source uniformly illuminates the sample, both the transient pump and probe beams have Gaussian distributions. Equation (7.7) can be rewritten for the transient case as ... [Pg.111]

The probe portion of the beam, on the other hand, goes to the cube mirror on the translation stage, which can move and thereby change the path length of the probe. The displacement of the translation stage determines the time delay between the pump and probe pulses. The time delay can be varied from I to 3 ns with the resolution of less than I fs. [Pg.112]

Figure 10-2. Experimental setup for pump and probe measurements. Two femtosecond pulses are focused onto the same spot of the sample. The pump pulse-induced changes A7/T0 of the normalized transmission of the probe pulse are measured as a function of the time delay between the two pulses. Figure 10-2. Experimental setup for pump and probe measurements. Two femtosecond pulses are focused onto the same spot of the sample. The pump pulse-induced changes A7/T0 of the normalized transmission of the probe pulse are measured as a function of the time delay between the two pulses.
The ODMR spectrometer resembles the PA spectrometer shown in Figure 7-1, with the sample placed in a microwave cavity between the pole pieces of an electromagnet. The sample is constantly illuminated by the pump and probe beams amplitude-modulated microwaves arc coupled into the cavity through a waveguide. Changes Si in PL or ST in probe transmission are delected by lock-in am-... [Pg.425]

Figure 10-5. Transient transmission changes AV/Po in PPV for different lime delays between the pump and probe pulse. The pump pulse is a 100 fs laser pulse at 325 nm obtained by frequency doubling ol amplified dye laser pulses, (a) and (b) correspond to different sides of a PPV-film. The spectra in (a) were obtained lor the unoxidized side of the sample while the set of spectra in (b) was measured for the oxidized side of the same sample. The main differences observed are a much lower stimulated emission effect for the oxidized side. The two bottom spectra depict the PL-spectra for comparison. The dashed line indicates the optical absorption (according to Kef. (281). Figure 10-5. Transient transmission changes AV/Po in PPV for different lime delays between the pump and probe pulse. The pump pulse is a 100 fs laser pulse at 325 nm obtained by frequency doubling ol amplified dye laser pulses, (a) and (b) correspond to different sides of a PPV-film. The spectra in (a) were obtained lor the unoxidized side of the sample while the set of spectra in (b) was measured for the oxidized side of the same sample. The main differences observed are a much lower stimulated emission effect for the oxidized side. The two bottom spectra depict the PL-spectra for comparison. The dashed line indicates the optical absorption (according to Kef. (281).
An important specific feature of the present experiment is worth noting. The X-ray photons have energies that are several orders of magnitude larger than those of optical photons. The pump and probe processes thus evolve on different time scales and can be treated separately. It is convenient to start with the X-ray probing processes, and treat them by Maxwellian electrodynamics. The pumping processes are studied next using statistical mechanics of nonlinear optical processes. The electron number density n(r,t), supposed to be known in the first step, is actually calculated in this second step. [Pg.265]

X-ray radiation, respectively, and the time delay x between pump and probe. A5(q, x) is the main quantity to be examined in what follows. [Pg.266]

Figure 1.5. Femtosecond spectroscopy of bimolecular collisions. The cartoon shown in (a illustrates how pump and probe pulses initiate and monitor the progress of H + COj->[HO. .. CO]->OH + CO collisions. The huild-up of OH product is recorded via the intensity of fluorescence excited hy the prohe laser as a function of pump-prohe time delay, as presented in (h). Potential energy curves governing the collision between excited Na atoms and Hj are given in (c) these show how the Na + H collision can proceed along two possible exit channels, leading either to formation of NaH + H or to Na + H by collisional energy exchange. Figure 1.5. Femtosecond spectroscopy of bimolecular collisions. The cartoon shown in (a illustrates how pump and probe pulses initiate and monitor the progress of H + COj->[HO. .. CO]->OH + CO collisions. The huild-up of OH product is recorded via the intensity of fluorescence excited hy the prohe laser as a function of pump-prohe time delay, as presented in (h). Potential energy curves governing the collision between excited Na atoms and Hj are given in (c) these show how the Na + H collision can proceed along two possible exit channels, leading either to formation of NaH + H or to Na + H by collisional energy exchange.
The fourth-order coherent Raman spectrum of a liquid surface was observed by Fujiyoshi et al. [28]. The same authors later reported a spectrum with an improved signal-to-noise ratio and different angle of incidence [27]. A water solution of oxazine 170 dye was placed in air and irradiated with light pulses. The SH generation at the oxazine solution was extensively studied by Steinhurst and Owrutsky [24]. The pump and probe wavelength was tuned at 630 nm to be resonant with the one-photon electronic transition of the dye. The probability of the Raman transition to generate the vibrational coherence is enhanced by the resonance. The efficiency of SH generation is also enhanced. [Pg.107]

In the time-domain detection of the vibrational coherence, the high-wavenumber limit of the spectral range is determined by the time width of the pump and probe pulses. Actually, the highest-wavenumber band identified in the time-domain fourth-order coherent Raman spectrum is the phonon band of Ti02 at 826 cm. Direct observation of a frequency-domain spectrum is free from the high-wavenum-ber limit. On the other hand, the narrow-bandwidth, picosecond light pulse will be less intense than the femtosecond pulse that is used in the time-domain method and may cause a problem in detecting weak fourth-order responses. [Pg.112]

Since there are a large number of different experimental laser and detection systems that can be used for time-resolved resonance Raman experiments, we shall only focus our attention here on two common types of methods that are typically used to investigate chemical reactions. We shall first describe typical nanosecond TR spectroscopy instrumentation that can obtain spectra of intermediates from several nanoseconds to millisecond time scales by employing electronic control of the pnmp and probe laser systems to vary the time-delay between the pnmp and probe pnlses. We then describe typical ultrafast TR spectroscopy instrumentation that can be used to examine intermediates from the picosecond to several nanosecond time scales by controlling the optical path length difference between the pump and probe laser pulses. In some reaction systems, it is useful to utilize both types of laser systems to study the chemical reaction and intermediates of interest from the picosecond to the microsecond or millisecond time-scales. [Pg.129]


See other pages where Pump-and-probe is mentioned: [Pg.264]    [Pg.1297]    [Pg.1979]    [Pg.1980]    [Pg.1981]    [Pg.1982]    [Pg.2128]    [Pg.2955]    [Pg.2956]    [Pg.2962]    [Pg.2962]    [Pg.3001]    [Pg.3027]    [Pg.3039]    [Pg.112]    [Pg.133]    [Pg.426]    [Pg.9]    [Pg.392]    [Pg.45]    [Pg.46]    [Pg.105]    [Pg.110]    [Pg.111]    [Pg.128]    [Pg.130]    [Pg.131]    [Pg.131]    [Pg.131]    [Pg.132]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Laser Flash Photolysis and Pump-Probe Spectroscopy

PUMP and PROBE experiment

Pump and probe method

Pump-Probe Spectroscopy, Photon Echoes and Vibrational Wavepackets

Pump-and-Probe Spectroscopy of Collisional Relaxation in Liquids

Pump-and-probe techniques

Pump-probe

Pump-probe and Photon-Echo Experiments

Pumps and Pumping

© 2024 chempedia.info