Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium decomposition

Sodium fusion for detection of halogens, nitrogen, sulfur. When an organic compound is heated with metallic sodium, decomposition occurs. Free carbon is deposited, and some carbon monoxide and dioxide are formed. The halogens forms halides (NaCl, NaBr, and Nal). Nitrogen in presence of carbon and sodium gives sodium cyanide, NaCN sulfur forms sodium sulflde, NajS. [Pg.88]

The above tests are the only ones applied in a routine way to the unknowns met in the present course Carbon and hydrogen may be detected by heating the substance in a diy test-tube with ignited CuO and identifying the moisture and carbon dioxide generated. Such a test is usually superfluous, since abundant amounts of eleinentarj carbon may be observed in the sodium decomposition reaction, and special tests for hydrogen are unnecessary for the purposes of identification of unknowns. [Pg.124]

Phosphorus may also be detected in the filtrate from the sodium decomposition, pronded that a 1 cc. portion of the filtrate be oxidized by boiling with a little concentrated nitric acid and subsequently tested with ammonium molybdate reagent. A more reliable test which is applicable also to quantitative work consists in fusing the organic compound (if non-volatile) with sodium carbonate and a small amount of potassium nitrate in a nickel crucible. The melt is dissolved in acid and tested with molybdate reagent in the usual manner. [Pg.124]

Too rapid heating produces explosive decomposition. The reaction between hydroxyammonium chloride, NHjOH. Cl , and sodium nitrite gives pure dinitrogen oxide ... [Pg.228]

The crystalline sodium sulphide (NajS,9H20) used to prepare the disulphide is very deliquescent, and only a sample which has been kept in a well-stoppered bottle and therefore reasonably dry should be used. A sample from a badly-stoppered bottle may contain, in addition to the crystals, a certain amount of aqueous solution, in which hydrolysis and partial decomposition will have occurred such a sample should therefore be rejected. Add 4 2 g. of finely powdered sulphur to a solution of 16 g. of the crystalline sodium sulphide in 60 ml. of water, and boil the mixture gently for a few minutes until a clear solution of the disulphide is obtained. [Pg.169]

Identification of Amines. Picric acid combines with many amines to give crystalline picrates, of general formula B,(NO )aCeHjOH, where B is a molecule of a monacidic base. These picrates have usually sharp melting- or decomposition-points, and serve to characterise the amines concerned. They may be formed either by (a) direct union of the acid and the base in a suitable solvent, or (6) by the interaction of sodium picrate and a salt of the amine in aqueous solution. [Pg.174]

The solution of the aniline hydrochloride should be cooled to 5°C., and this temperature maintained throughout the addition of the sodium nitrite solution. External cooling has to be maintained, otherwise the heat of the reaction would cause the temperature to rise, with the consequent decomposition of the diazonium chloride and the production of phenol. If, on the other hand, the temperature is reduced to about o , diazotisation becomes extremely slow and unchanged nitrous acid may remain in the solution for an impracticably long time. [Pg.183]

Dissolve 15 ml. (15-4 g.) of aniline in a mixture of 40 ml. of concentrated hydrochloric acid and 40 ml. of water contained in a 250 ml. conical flask. Place a thermometer in the solution, immerse the flask in a mixture of ice and water, and cool until the temperature of the stirred solution reaches 5°. Dissolve I2 5 g. of powdered sodium nitrite in 30 ml. of water, and add this solution in small quantities (about 2-3 ml. at a time) to the cold aniline hydrochloride solution, meanwhile keeping the latter well stirred by means of a thermometer. Heat is evolved by the reaction, and therefore a short interval should be allowed between consecutive additions of the sodium nitrite, partly to allow the temperature to fall again to 5°, and partly to ensure that the nitrous acid formed reacts as completely as possible with the aniline. The temperature must not be allowed to rise above 10°, otherwise appreciable decomposition of the diazonium compound to phenol will occur on the other hand, the temperature... [Pg.184]

Place the distillate in a separating-funnel and extract the benzonitrile twice, using about 30 ml. of ether for each extraction. Return the united ethereal extracts to the funnel and shake with 10% sodium hydroxide solution to eliminate traces of phenol formed by decomposition of the benzenediazonium chloride. Then run off the lower aqueous layer, and shake the ethereal solution with about an equal volume of dilute sulphuric acid to remove traces of foul-smelling phenyl isocyanide (CaHjNC) which are always present. Finally separate the sulphuric acid as completely as possible, and shake the ether with water to ensure absence of acid. Run off the water and dry the benzonitrile solution over granular calcium chloride for about 20 minutes. [Pg.192]

When an aqueous solution of a diazonium salt is added to an alkaline solution of a phenol, coupling occurs with formation of an azo-compound (p. 188). If ho vc cr the ntiueous solution of the diazonium salt, t. . ., />-bromohenzene diazonium chloride, is mixed with an excess of an aromatic hydrocarbon, and aqueous sodium hydroxide then added to the vigorously stirred mixture, the diazotate which is formed, e.g., BrC,H N OH, dissolves in the hydrocarbon and there undergoes decomposition with the formation of nitrogen and two free radicals. The aryl free radical then reacts with the hydrocarbon to give a... [Pg.201]

Dissolve 13 g. of sodium in 30 ml. of absolute ethanol in a 250 ml. flask carrying a reflux condenser, then add 10 g. (9 5 ml.) of redistilled ethyl malonate, and place the flask on a boiling water-bath. Without delay, add a solution of 5 3 g. of thiourea in a minimum of boiling absolute ethanol (about 100 ml.). The sodium salt of thiobarbituric acid rapidly begins to separate. Fit the water-condenser with a calcium chloride guard-tube (Fig. 61, p. 105), and boil the mixture on the water-bath for 1 hour. Cool the mixture, filter off the sodium salt at the pump and wash it with a small quantity of cold acetone. Dissolve the salt in warm water and liberate the acid by the addition of 30 ml. of concentrated hydrochloric acid diluted with 30 ml. of water. Cool the mixture, filter off the thiobarbituric acid, and recrystallise it from hot water. Colourless crystals, m.p. 245 with decomposition (immersed at 230°). Yield, 3 5 -4 0 g. [Pg.307]

The evolution of nitrogen is not always entirely satisfactory as a test owing to the possible evolution of gaseous decomposition products of nitrous acid itself. The test may be performed as follows. To i ml. of chilled concentrated sodium nitrite solution add i ml. of dilute acetic acid. Allow any preliminary evolution of gas to subside, and then add the mixed solution to a cold aqueous solution (or suspension) of the amide note the brisk effervescence. [Pg.360]

Equip a 1-litre three-necked flask with a powerful mechanical stirrer, a separatory funnel with stem extending to the bottom of the flask, and a thermometer. Cool the flask in a mixture of ice and salt. Place a solution of 95 g. of A.R. sodium nitrite in 375 ml. of water in the flask and stir. When the temperature has fallen to 0° (or slightly below) introduce slowly from the separatory funnel a mixture of 25 ml. of water, 62 5 g. (34 ml.) of concentrated sulphuric acid and 110 g. (135 ml.) of n-amyl alcohol, which has previously been cooled to 0°. The rate of addition must be controlled so that the temperature is maintained at 1° the addition takes 45-60 minutes. AUow the mixture to stand for 1 5 hours and then filter from the precipitated sodium sulphate (1). Separate the upper yellow n-amyl nitrite layer, wash it with a solution containing 1 g. of sodium bicarbonate and 12 5 g. of sodium chloride in 50 ml. of water, and dry it with 5-7 g. of anhydrous magnesium sulphate. The resulting crude n-amyl nitrite (107 g.) is satisfactory for many purposes (2). Upon distillation, it passes over largely at 104° with negligible decomposition. The b.p. under reduced pressure is 29°/40 mm. [Pg.306]

Dissolve 10 g. of lactose (1) in 100 ml. of nitric acid, sp. gr. 115, in an evaporating dish and evaporate in a fume cupboard until the volume has been reduced to about 20 ml. The mixture becomes thick and pasty owing to the separation of mucic acid. When cold, dilute with 30 ml. of water, filter at the pump and set the filtrate A) aside. Wash the crude acid with cold water. Purify the mucic acid by dissolving it in the minimum volume of dilute sodium hydroxide solution and reprecipitating with dilute hydrochloric acid do not allow the temperature to rise above 25°. Dry the purified acid (about 5 g.) and determine the m.p. Mucic acid melts with decomposition at 212-213°. [Pg.453]

Ethyl acetoacetate may be prepared by the action of sodium upon dry ethyl acetate and decomposition of the resulting sodio compound with dilute acetic acid. Most samples of ethyl acetate contain some ethyl alcohol and it is usually assumed that sodium ethoxidc is the condensing agent ... [Pg.475]

The latter upon decomposition with dilute hydrochloric acid yields laevo sec.-octyl hydrogen phthalate the crystalline brucine salt, when similarly treated, affords the dextro sec.-octyl hydrogen phthalate. These are reerystallised and separately hydrolysed with sodium hydroxide solution to yield pure I- and d-sec.-octyl alcohols ... [Pg.506]

It may be mentioned that diazonium fluoborates containing the nitro group usually decompose suddenly and with violence upon heating, hence if o- or p-fluonitrobenzene are required, the fluoborates (in 10-20 g. quantities) should he mixed with 3-4 times their weight of pure dry sand (or barium sulphate or sodium fluoride) and heated cautiously until decomposition commences intermittent heating will be required to complete the reaction. [Pg.595]

It is advisable to add the sodium nitrite solution, particularly in preparations on a larger scale, through a separatory or dropping funnel with the tip of the stem extending well below the sui-face of the liquid tliis will prevent loss of nitrous acid by surface decomposition into oxides of nitrogen. [Pg.599]

Assemble the apparatus shown in Fig. 1 V, 67, 1 this is self-explanatory. The distilling flask has a capacity of 250 ml. and the beaker contains 150 ml. of 10 per cent, sodium hydroxide solution. All corks must fit well and should be coated with paraflSn wax (by dipping into molten wax, and allowing to drain). Place half of the yield of the dry phenyldiazonium fluoborate in the distilling flask. Heat the solid gently with a small luminous flame at one point near its surface until decomposition begins withdraw the flame and allow the reaction to continue... [Pg.610]

Difluorodiphenyl. Bis-diazotise a solution of 46 g. of benzidine (Section IV,88) in 150 ml. of concentrated hydrochloric acid and 150 ml. of water by means of a solution of 35 g. of sodium nitrite in 60 ml. of water add about 200 g. of crushed ice during the process (compare p-Fbtorotoluene above). Filter the solution and add it to a filtered solution of 85 g. of sodium borofluoride in 150 ml. of water. Stir for several minutes, collect the precipitated bis-diazonium borofluoride by suction filtration, wash with 5 ml. of ice-cold water, and dry at 90-100°. Place the dry salt in a flask fitted with an air condenser, immerse the flask in an oil bath, and slowly raise the temperature to 150° (Fume Cupboard ). When decomposition of the salt is complete, steam distil the mixture collect the 4 4 difluoro-diphenyl which passes over and recrystallise it from ethanol. The yield is 21 g., m.p. 92-93°. [Pg.612]


See other pages where Sodium decomposition is mentioned: [Pg.122]    [Pg.123]    [Pg.180]    [Pg.122]    [Pg.123]    [Pg.180]    [Pg.35]    [Pg.166]    [Pg.250]    [Pg.428]    [Pg.244]    [Pg.141]    [Pg.252]    [Pg.307]    [Pg.419]    [Pg.433]    [Pg.542]    [Pg.566]    [Pg.601]    [Pg.602]    [Pg.603]    [Pg.609]    [Pg.610]    [Pg.611]    [Pg.618]    [Pg.730]    [Pg.735]    [Pg.748]    [Pg.767]    [Pg.784]    [Pg.807]   
See also in sourсe #XX -- [ Pg.105 , Pg.163 ]

See also in sourсe #XX -- [ Pg.94 , Pg.195 ]

See also in sourсe #XX -- [ Pg.238 ]

See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Amalgam, sodium decomposition

Catalytic decomposition sodium oxide

Formation and Decomposition of Sodium Amalgam

H Decomposition of Sodium Dithionite

Sodium azide, decomposition

Sodium bicarbonate, decomposition

Sodium chlorate, decomposition

Sodium chloride decomposition

Sodium chlorite, decomposition

Sodium hydrogen phosphates decompositions

Sodium hyponitrite, decomposition

Sodium nitrate: decomposition

Sodium perchlorate, decomposition

Sodium permanganate, decomposition

Sodium peroxide, decomposition

Sodium sulfate, decomposition

Sodium superoxide, decomposition

Thermal Decomposition of Sodium Alkoxides

Thermal decomposition sodium bicarbonate

© 2024 chempedia.info