Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary ion mass spectrometry SIMS analysis

H. Gnaser, W. Bock, E. Rowlett, Y. Men, C. Ziegler, R. Zapf, V. Hessel, Secondary-ion mass spectrometry (SIMS) analysis of catalyst coatings used in microreactors, Nud. Instrum. Methods Phys. Res., Sect. [Pg.1075]

Ions are also used to initiate secondary ion mass spectrometry (SIMS) [ ], as described in section BI.25.3. In SIMS, the ions sputtered from the surface are measured with a mass spectrometer. SIMS provides an accurate measure of the surface composition with extremely good sensitivity. SIMS can be collected in the static mode in which the surface is only minimally disrupted, or in the dynamic mode in which material is removed so that the composition can be detemiined as a fiinction of depth below the surface. SIMS has also been used along with a shadow and blocking cone analysis as a probe of surface structure [70]. [Pg.310]

Spectrometric Analysis. Remarkable developments ia mass spectrometry (ms) and nuclear magnetic resonance methods (nmr), eg, secondary ion mass spectrometry (sims), plasma desorption (pd), thermospray (tsp), two or three dimensional nmr, high resolution nmr of soHds, give useful stmcture analysis information (131). Because nmr analysis of or N-labeled amino acids enables determiaation of amino acids without isolation from organic samples, and without destroyiag the sample, amino acid metaboHsm can be dynamically analy2ed (132). Proteia metaboHsm and biosynthesis of many important metaboUtes have been studied by this method. Preparative methods for labeled compounds have been reviewed (133). [Pg.285]

Environment. Detection of environmental degradation products of nerve agents directly from the surface of plant leaves using static secondary ion mass spectrometry (sims) has been demonstrated (97). Pinacolylmethylphosphonic acid (PMPA), isopropylmethylphosphonic acid (IMPA), and ethylmethylphosphonic acid (EMPA) were spiked from aqueous samples onto philodendron leaves prior to analysis by static sims. The minimum detection limits on philodendron leaves were estimated to be between 40 and 0.4 ng/mm for PMPA and IMPA and between 40 and 4 ng/mm for EMPA. Sims analyses of IMPA adsorbed on 10 different crop leaves were also performed in order to investigate general apphcabiflty of static sims for... [Pg.247]

Sputtered Neutral Mass Spectrometry (SNMS) is the mass spectrometric analysis of sputtered atoms ejected from a solid surface by energetic ion bombardment. The sputtered atoms are ionized for mass spectrometric analysis by a mechanism separate from the sputtering atomization. As such, SNMS is complementary to Secondary Ion Mass Spectrometry (SIMS), which is the mass spectrometric analysis of sputtered ions, as distinct from sputtered atoms. The forte of SNMS analysis, compared to SIMS, is the accurate measurement of concentration depth profiles through chemically complex thin-film structures, including interfaces, with excellent depth resolution and to trace concentration levels. Genetically both SALI and GDMS are specific examples of SNMS. In this article we concentrate on post ionization only by electron impact. [Pg.43]

In other articles in this section, a method of analysis is described called Secondary Ion Mass Spectrometry (SIMS), in which material is sputtered from a surface using an ion beam and the minor components that are ejected as positive or negative ions are analyzed by a mass spectrometer. Over the past few years, methods that post-ion-ize the major neutral components ejected from surfaces under ion-beam or laser bombardment have been introduced because of the improved quantitative aspects obtainable by analyzing the major ejected channel. These techniques include SALI, Sputter-Initiated Resonance Ionization Spectroscopy (SIRIS), and Sputtered Neutral Mass Spectrometry (SNMS) or electron-gas post-ionization. Post-ionization techniques for surface analysis have received widespread interest because of their increased sensitivity, compared to more traditional surface analysis techniques, such as X-Ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES), and their more reliable quantitation, compared to SIMS. [Pg.559]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Further structural information is available from physical methods of surface analysis such as scanning electron microscopy (SEM), X-ray photoelectron or Auger electron spectroscopy (XPS), or secondary-ion mass spectrometry (SIMS), and transmission or reflectance IR and UV/VIS spectroscopy. The application of both electroanalytical and surface spectroscopic methods has been thoroughly reviewed and appropriate methods are given in most of the references of this chapter. [Pg.60]

It is worth noting, prior to citing actual metal atom studies, the recent secondary ion mass spectrometry (SIMS) on an argon matrix-isolated propene sample, demonstrating the applicability of SIMS analysis to the characterization of matrix-isolated species. The same group h s reported the first C NMR spectra of organic molecules trapped in an argon matrix. ... [Pg.167]

There is a branch of MS specially designed for dealing with the analysis of inorganic materials.[21,22] Different specific ionization techniques, such as inductively coupled plasma mass spectrometry (ICP-MS),[23] glow discharge mass spectrometry (GD-MS)[24] and secondary ion mass spectrometry (SIMS),[25] are available and they are widely used in cultural heritage applications. Their description is beyond the scope of this chapter. [Pg.53]

As for silicon, secondary ion mass spectrometry (SIMS) is the most widely used profiling analysis technique for deuterium diffusion studies in III-V compounds. Deuterium advantageously replaces hydrogen for lowering the detection limit. The investigations of donor and acceptor neutralization effects have been usually performed through electrical measurements, low temperature photoluminescence, photothermal ionization spectroscopy (PTIS) and infrared absorption spectroscopy. These spectroscopic investigations will be treated in a separated part of this chapter. [Pg.465]

Secondary ion (mass spectrometry) SIMS Particle induced desorption/ ionization Nonvolatile molecular ions Semiconductors Surface analysis Imaging... [Pg.18]

Today, secondary ion mass spectrometry (SIMS) is frequently used for analysis of trace elements in solid materials, especially in semiconductors and in thin films [62,63]. Primary beam species useful in SIMS include Cs+, Oj, O, Ar+, and Ga+ at energies from 1-30 keV. The bombarding primary ion beam produces monatomic and polyatomic particles of sample... [Pg.623]

As mentioned already, many surface-analysis techniques are available nowadays. In the opinion of some specialists in this field [36, 37], four of these are greater in importance X-ray photoelectron spectrometry (ESCA), Auger electron spectrometry (AES), secondary-ion mass spectrometry (SIMS), and low-energy ion scattering spectrometry (ISS). [Pg.450]

Several years later, the next step in the application of MS-MS for mixture analysis was developed by Hunt et al. [3-5] who described a master scheme for the direct analysis of organic compounds in environmental samples using soft chemical ionisation (Cl) to perform product, parent and neutral loss MS-MS experiments for identification [6,7]. The breakthrough in LC-MS was the development of soft ionisation techniques, e.g. desorption ionisation (continuous flow-fast atom bombardment (CF-FAB), secondary ion mass spectrometry (SIMS) or laser desorption (LD)), and nebulisation ionisation techniques such as thermospray ionisation (TSI), and atmospheric pressure ionisation (API) techniques such as atmospheric pressure chemical ionisation (APCI), and electrospray ionisation (ESI). [Pg.152]

Mass spectrometry is traditionally a gas phase technique for the analysis of relatively volatile samples. Effluents from gas chromatographs are already in a suitable form and other readily vaporized samples could be fairly easily accommodated. However the coupling of mass spectrometry to liquid streams, e.g. HPLC and capillary electrophoresis, posed a new problem and several different methods are now in use. These include the spray methods mentioned below and bombarding with atoms (fast atom bombardment, FAB) or ions (secondary-ion mass spectrometry, SIMS). The part of the instrument in which ionization of the neutral molecules occurs is called the ion source. The commonest method of... [Pg.126]

Thanks to the extensive literature on Aujj and the related smaller gold cluster compounds, plus some new results and reanalysis of older results to be presented here, it is now possible to paint a fairly consistent physical picture of the AU55 cluster system. To this end, the results of several microscopic techniques, such as Extended X-ray Absorption Fine Structure (EXAFS) [39,40,41], Mossbauer Effect Spectroscopy (MES) [24, 25, 42,43,44,45,46], Secondary Ion Mass Spectrometry (SIMS) [35, 36], Photoemission Spectroscopy (XPS and UPS) [47,48,49], nuclear magnetic resonance (NMR) [29, 50, 51], and electron spin resonance (ESR) [17, 52, 53, 54] will be combined with the results of several macroscopic techniques, such as Specific Heat (Cv) [25, 54, 55, 56,49], Differential Scanning Calorimetry (DSC) [57], Thermo-gravimetric Analysis (TGA) [58], UV-visible absorption spectroscopy [40, 57,17, 59, 60], AC and DC Electrical Conductivity [29,61,62, 63,30] and Magnetic Susceptibility [64, 53]. This is the first metal cluster system that has been subjected to such a comprehensive examination. [Pg.3]

A striking feature of the ILs is their low vapor pressure. This, on the other hand, is a factor hampering their investigation by MS. For example, a technique like electron impact (El) MS, based on thermal evaporation of the sample prior to ionization of the vaporized analyte by collision with an electron beam, has only rarely been applied for the analysis of this class of compounds. In contrast, nonthermal ionization methods, like fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), atmospheric pressure chemical ionization (APCI), ESI, and MALDI suit better for this purpose. Measurement on the atomic level after burning the sample in a hot plasma (up to 8000°C), as realized in inductively coupled plasma (ICP) MS, has up to now only rarely been applied in the field of IE (characterization of gold particles dissolved in IE [1]). This method will potentially attract more interest in the future, especially, when the coupling of this method with chromatographic separations becomes a routine method. [Pg.373]


See other pages where Secondary ion mass spectrometry SIMS analysis is mentioned: [Pg.269]    [Pg.304]    [Pg.47]    [Pg.269]    [Pg.304]    [Pg.47]    [Pg.1828]    [Pg.2725]    [Pg.549]    [Pg.397]    [Pg.604]    [Pg.622]    [Pg.625]    [Pg.700]    [Pg.415]    [Pg.33]    [Pg.141]    [Pg.32]    [Pg.150]    [Pg.177]    [Pg.302]    [Pg.4]    [Pg.676]    [Pg.66]    [Pg.31]    [Pg.173]    [Pg.163]    [Pg.158]    [Pg.381]    [Pg.188]    [Pg.137]    [Pg.224]    [Pg.140]    [Pg.621]   
See also in sourсe #XX -- [ Pg.258 , Pg.451 , Pg.452 , Pg.453 , Pg.456 , Pg.457 , Pg.460 ]




SEARCH



Analyses secondary

Ion analysis

Mass spectrometry SIMS)

Mass spectrometry analysis

Mass spectrometry secondary ion

SIM

SIMS

SIMS (Secondary Ion Mass

Secondary ion mass

Secondary ion mass spectrometry (SIMS

Secondary mass spectrometry

Spectrometry secondary ion

© 2024 chempedia.info