Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Compounds, labeled

Pyrolysis of CHs-labeled 1-methylpyrazole 853 with chloroform at 550 °C in a continuous flow reactor yielded unlabeled 2-chloropyrimidine 854 and 2-cyanopyrrole 855 labeled at the cyano groups (Equation 189) 1997J(P1)3581 . However, pyrolysis of 1-benzyIpyrazole with chloroform under similar conditions gave 2-chloropyrimidine 854, 2-phenylpyrimidine, and, as the major product, a-carboline. [Pg.112]

The synthesis of 3,5-bis(trideuteromethyl)pyrazole was achieved by reaction of perdeuterated acetylacetone with perdeuterated hydrazine hydrate 90MI 30l-02 . Preparation of [ NjJpyrazoles was achieved from commercial NH2- NH2 and -dicarbonyl compounds or the corresponding acetals 89JA7304, 92JA9657, 92JCS(P2)1737 . [Pg.67]


Strategy Problem 6 A labelled compound for biosynthetic studies. Mevaloitic acid (TM 418) is an intermediate in the biosynthesis of terpenes and steroids (Tedder, volume 4, p.217 ff). To study exactly what happens to each carbon atom during its transformation into, say, hmonene (418A), we need separate samples of mevalonic acid labelled with in each carbon atom in the molecule. This turns our normal strategy on its head since we must now look for one carbon discoimections. You can use reagents like Na CN, and... [Pg.134]

CH3CO2H. See if you can find approaches to some of the labelled compounds. [Pg.134]

Isotopically Labeled Compounds. The hydrogen isotopes are given special names H (protium), H or D (deuterium), and H or T (tritium). The superscript designation is preferred because D and T disturb the alphabetical ordering in formulas. [Pg.216]

Isotopically labeled compounds may be described by inserting the italic symbol of the isotope in brackets into the name of the compound for example, H C1 is hydrogen chloride[ CZ] or hydrogen chloride-36, and H C1 is hydrogen H chloride[ CZ] or hydrogen-2 chloride-38. [Pg.216]

Before sample preparation, surrogate compounds must be added to the matrix. These are used to evaluate the efficiency of recovery of sample for any analytical method. Surrogate standards are often brominated, fluorinated, or isotopically labeled compounds that are not expected to be present in environmental media. If the surrogates are detected by GC/MS within the specified range, it is... [Pg.299]

The existence of the OF radical was further estabHshed by use of O-labeled compounds and O nmr studies to verify the mechanism (29) ... [Pg.220]

In the most common method for chemiluminescent immunoassay (GLIA), after the immunological reaction and any necessary separation steps, the labeled compounds or complexes react with an oxidizer, eg, hydrogen peroxide, and an enzyme, eg, peroxidase, or a chelating agent such as hemin or metal... [Pg.27]

EXA (exact) search retrieves the input stmcture and its stereoisomers, homopolymers, ions, radicals, and isotopicaHy labeled compounds. EAM (family) search retrieves the same stmctures as EXA, plus multicomponent compounds, copolymers, addition compounds, mixtures, and salts. SSS (substmcture) search uses a range of possible substituents and bonds in the input stmcture. CSS (closed substmcture) search is a more restrictive... [Pg.117]

John Wiley Sons, Cornell University ms 125,000 CD-ROM, tape isotopic labeled compound QuaUty Index algorithm... [Pg.122]

Spectrometric Analysis. Remarkable developments ia mass spectrometry (ms) and nuclear magnetic resonance methods (nmr), eg, secondary ion mass spectrometry (sims), plasma desorption (pd), thermospray (tsp), two or three dimensional nmr, high resolution nmr of soHds, give useful stmcture analysis information (131). Because nmr analysis of or N-labeled amino acids enables determiaation of amino acids without isolation from organic samples, and without destroyiag the sample, amino acid metaboHsm can be dynamically analy2ed (132). Proteia metaboHsm and biosynthesis of many important metaboUtes have been studied by this method. Preparative methods for labeled compounds have been reviewed (133). [Pg.285]

Radiometric detection technology offers high sensitivity and specificity for many appUcations in scientific research. The radioactive emission of the labeled compound is easily detected and does not suffer from interference from endogenous radioactivity in the sample. Because of this unique property, labeled compounds can be used as tracers to study the localization, movement, or transformation of molecules in complex experimental systems. [Pg.437]

Many applications ia tracer technology require products of high specific activity, ie, compounds having a high degree of substitution of specific atoms with radioisotopes. For many labeled compounds nearly 100% labeling can be achieved at one or more locations ia a molecule usiag... [Pg.438]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

Even higher organisms can be used for the production of labeled compounds. Plants, tobacco, or Canna indica for example, when grown in an exclusive atmosphere of radioactive carbon dioxide, [ 002], utilize the labeled precursor as the sole source of carbon for photosynthesis. After a suitable period of growth, almost every carbon atom in the plant is radioactive. Thus, plants can serve as an available source of C-labeled carbohydrates (9). [Pg.438]

The small synthetic scale used for production of many labeled compounds creates special challenges for product purification. Eirst, because of the need for use of micro or semimicro synthetic procedures, the yield of many labeled products such as high specific activity tritiated compounds is often low. In addition, under such conditions, side reactions can generate the buildup of impurities, many of which have chemical and physical properties similar to the product of interest. Also, losses are often encountered in simply handling the small amounts of materials in a synthetic mixture. As a consequence of these considerations, along with the variety of tracer chemicals of interest, numerous separation techniques are used in purifying labeled compounds. [Pg.438]

Many tracer chemicals are inherently unstable even as the unlabeled forms. Susceptibility of a chemical to hydrolysis, oxidation, photolysis, and microbiological degradation needs to be evaluated when designing suitable storage conditions for the labeled compound. Eactors that reduce radiolytic degradation, such as dispersal in solution, are apt to increase chemical degradation or instability. [Pg.438]

Other methods of sensitive detection of radiotracers have been developed more recently. Eourier transform nmr can be used to detect (nuclear spin 1/2), which has an efficiency of detection - 20% greater than that of H. This technique is useful for ascertaining the position and distribution of tritium in the labeled compound (14). Eield-desorption mass spectrometry (fdms) and other mass spectral techniques can be appHed to detection of nanogram quantities of radiolabeled tracers, and are weU suited for determining the specific activity of these compounds (15). [Pg.439]

Generally, labeled compounds are prepared by procedures which introduce the radionuchde at a late stage of the synthesis. This allows for maximum radiochemical yields, and reduces the handling time of radioactive material. When dealing with short half-life isotopes, a primary consideration is the time required to conduct synthetic procedures and purification methods. [Pg.480]

Alternatively, radiohalogen-labeled compounds may be prepared by way of isotopic labeling from the unlabeled bromo or iodo derivatives by various two-step reaction sequences. Examples include the use of trialkylsilyl synthons as described in References 10—13, and the use of boronic acid synthons as described in References 14 and 15. [Pg.480]

The possibility offered by new instruments to obtain N NMR spectra using natural abundance samples has made " N NMR spectroscopy a method which holds no interest for the organic chemist, since the chemical shifts are identical and the signal resolution incomparably better with the N nucleus (/ = ) than with " N (/ = 1). H- N coupling constants could be obtained from natural abundance samples by N NMR and more accurately from N-labelled compounds by H NMR. Labelled compounds are necessary to measure the and N- N coupling constants. [Pg.193]

In the structure sections, labelled compounds have often been used to solve a spectroscopic problem involved in microwave (Section 4.04.1.3.2), nitrogen NMR (Section 4.04.1.3.5), IR (Section 4.04.1.3.7(i)) or mass spectrometry (Section 4.04.1.3.8). The synthesis usually involves non-radioactive compounds ( H, N) by classical methods that must be repeated several times in order to obtain good yields. [Pg.289]

Radioactively labelled compounds have been employed in biology for the clarification of metabolic processes since the mid-1940s It has, thus, been necessary to prepare such substances and to check on their punty... [Pg.40]

An example is the preparation of 18-trideuterio 5a-steroids bearing a side chain at C-17. Labeling of this position with three deuteriums was accomplished by utilizing the Johnson procedure for steroid total synthesis. This synthesis involves, in part, introduction of the 18-angular methyl group by methylation of the D-homo-17a-keto-17-furfurylidene intermediate (243). By substituting d3-methyl iodide in this step, the C/D cis- and ra/J5-18,18,18-d3 labeled ketones [(244) and (245)] are obtained. Conversion of the C/D tra 5-methylation product (245) into 18,18,18-d3-d /-3)8-hydroxy-5a-androstan-17-one (246) provides an intermediate which can be converted into a wide variety of C-18 labeled compounds of high (98%) isotopic... [Pg.208]


See other pages where Compounds, labeled is mentioned: [Pg.1496]    [Pg.1545]    [Pg.330]    [Pg.321]    [Pg.321]    [Pg.438]    [Pg.438]    [Pg.439]    [Pg.439]    [Pg.440]    [Pg.476]    [Pg.497]    [Pg.155]    [Pg.40]    [Pg.60]    [Pg.21]    [Pg.168]    [Pg.209]    [Pg.289]    [Pg.36]    [Pg.4]    [Pg.41]    [Pg.368]    [Pg.49]    [Pg.70]   
See also in sourсe #XX -- [ Pg.435 , Pg.455 ]

See also in sourсe #XX -- [ Pg.257 ]

See also in sourсe #XX -- [ Pg.820 ]

See also in sourсe #XX -- [ Pg.2 , Pg.13 , Pg.15 , Pg.17 , Pg.18 , Pg.53 , Pg.55 , Pg.58 , Pg.59 , Pg.60 ]




SEARCH



Compound labels

Labelled compounds

© 2024 chempedia.info