Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Risk assessment explosibility

The next part of the procedure involves risk assessment. This includes a deterrnination of the accident probabiUty and the consequence of the accident and is done for each of the scenarios identified in the previous step. The probabiUty is deterrnined using a number of statistical models generally used to represent failures. The consequence is deterrnined using mostiy fundamentally based models, called source models, to describe how material is ejected from process equipment. These source models are coupled with a suitable dispersion model and/or an explosion model to estimate the area affected and predict the damage. The consequence is thus determined. [Pg.469]

Methods for performing hazard analysis and risk assessment include safety review, checkhsts, Dow Fire and Explosion Index, what-if analysis, hazard and operabihty analysis (HAZOP), failure modes and effects analysis (FMEA), fault tree analysis, and event tree analysis. Other methods are also available, but those given are used most often. [Pg.470]

Safety air technology, including risk assessment, that minimizes damages and hazards caused by accidents, fire, and explosion... [Pg.3]

To estimate tlie potential iiupaet on tlie publie or tlie environment of aeeidents of different types, the likely emergeney zone must be studied. For example, a liazardous gas leak, fire, or explosion may eause a toxie cloud to spread over a great distance. The minimum atmospheric dispersion model. Vtirious models can be used tlie more difficult models produce more realistic results, but tlie simpler and faster models may provide adequate data for planning purposes. A more tliorough discussion of atmospheric dispersion is presented in Part 111 - Healtli Risk Assessment. [Pg.88]

The term risk assessment is not only used to describe the likelihood of an ad crse response to a chemical or physical agent, but it has also been used to describe the likelihood of any unwanted event. This subject is treated in more detail in tlie next Part. These include risks such as explosions or injuries in tlie workplace natural catastrophes injury or deatli due to various voluntary activities such as skiing, sky diving, flying, and bimgee Jumping diseases deatli due to natural causes and many others. ... [Pg.288]

This book is divided into five parts the problem, accidents, health risk, hazard risk, and hazard risk analysis. Part 1, an introduction to HS AM, presents legal considerations, emergency planning, and emergency response. This Part basically ser es as an oveiwiew to the more teclmical topics covered in the remainder of the book. Part 11 treats the broad subject of accidents, discussing fires, explosions and other accidents. The chapters in Parts 111 and Part IV provide introductory material to health and hazard risk assessment, respectively. Pai1 V examines hazaid risk analysis in significant detail. The thiee chapters in this final part include material on fundamentals of applicable statistics theory, and the applications and calculations of risk analysis for real systems. [Pg.661]

Professor Martel s book addresses specifically some of the more technical eispects of the risk assessment process, mainly in the areas of hazard identification, and of the consequence/effect analysis elements, of the overall analysis whilst where appropriate setting these aspects in the wider context. The book brings together a substantial corpus of information, drawn from a number of sources, about the toxic, flammable and explosive properties and effect (ie harm) characteristics of a wide range of chemical substances likely to be found in industry eind in the laboratory, and also addresses a spectrum of dangerous reactions of, or between, such substances which may be encountered. This approach follows the classical methodology and procedures of hazard identification, analysing material properties eind... [Pg.22]

The first step in a process plant building risk assessment is to identify specific accident scenarios that endanger building occupants. As discussed in Chapter 2 and illustrated in Table 2.1, accident scenarios are sequences of events that lead to an outcome of concern. The specific outcomes of concern are those involving explosions or fires that could impact buildings in process plants. [Pg.30]

The fire risks of nitrate-sulfur mixtures have been discussed [1], and explosion risks assessed by DTA [2],... [Pg.1683]

This keynote paper gives a general discussion of blast waves developed by high explosive detonations, their effects on structures and people, and risk assessment methods. The properties of free-field waves and normally and obliquely reflected waves are reviewed. Diffraction around block shapes and slender obstacles is covered next. Blast and gas pressures from explosions within vented structures are sumnarized. [Pg.2]

Practical techniques for explosion containment and venting are discussed, and the topic of risk assessment for explosives facilities is reviewed. [Pg.2]

Risk Assessment Systems. Most of the techniques, design methods and applications in this book are deterministic. That is, some worst-case accident is assumed to happen, its effects are calculated to the best of our ability, and systems or structures are then designed to contain, suppress or mitigate the explosion accident effect. [Pg.46]

Merz, H. A., "Methods of Quantitative Risk Assessment The Case of the Propellant Supply System," Minutes of the Twenty-First Explosives Safety Seminar, Houston, TX, Aug. 1984, pp. 1485-1506. [Pg.57]

While the basic principle of inherently safer design is generally accepted, it is not always easy to put it into practice. Inherently safer design has been advocated since the explosion at Flixborough in 1974. Progress has been real but nevertheless the concept has not been adopted nearly as rapidly as quantitative risk assessment, introduced into the chemical industry only a few years earlier (Kletz, 1996). [Pg.33]

This book in not intended to provide in-depth guidance on basic risk assessment principles nor on fire and explosion protection engineering foundations or design practices. Several other excellent books are available on these subjects and some references to these are provided at the end of each chapter. [Pg.297]

Additional models and software are identified in A Guide to Quantitative Risk Assessment for Offshore Installations (Spouge, 1999) which address offshore risk analysis, explosion modeling, evacuation and rescue analysis, reliability analysis, accident databases, event tree analysis, and safety management. [Pg.423]

The Phase 1 quantitative risk assessment for Pueblo and several other stockpile sites with assembled chemical munitions completed several years ago showed that the stockpile at Pueblo presents risk to public health several orders of magnitude lower than any other site. This is because it contains only mustard agent, which is less volatile than other agents, and therefore would not be carried very far in the event of a fire or explosion. Nevertheless, the Army has undertaken several risk and safety assessments to meet the legislative requirement that the technology chosen for Pueblo be as safe as or safer than the baseline system. The committee believes that the incineration technologies under consideration will have very low risk and will meet reasonable interpretations of safety criteria, even if the actual risk numbers marginally exceed the baseline criteria. [Pg.21]

The thermal risk linked to a chemical reaction is the risk of loss of control of the reaction and associated consequences (e.g. triggering a runaway reaction). Therefore, it is necessary to understand how a reaction can switch from its normal course to a runaway condition. In order to make this assessment, the theory of thermal explosion (see Chapter 2) needs to be understood, along with the concepts of risk assessment. This implies that an incident scenario was identified and described, with its triggering conditions and the resulting consequences, in order to assess the severity and probability of occurrence. For thermal risks, the worst case will be to lose the cooling of a reactor or in general to consider that the reaction mass or the substance to be assessed is submitted to adiabatic conditions. Hence, we consider a cooling failure scenario. [Pg.60]

If one conducts a literature search on the term risk assessment, a lengthy list of publications on a range of topics will be produced (NAS/NRC, 1983 1994 Paustenbach, 1995), because this term has been used to describe estimates of the likelihood of a number of unwanted events. These include, for example, industrial explosions, workplace injuries, failures of machine parts, natural catastrophes, injury or death as a result of voluntary activities or lifestyle, diseases, and death from natural causes. [Pg.75]


See other pages where Risk assessment explosibility is mentioned: [Pg.7]    [Pg.92]    [Pg.2270]    [Pg.8]    [Pg.87]    [Pg.100]    [Pg.318]    [Pg.41]    [Pg.142]    [Pg.46]    [Pg.47]    [Pg.227]    [Pg.147]    [Pg.334]    [Pg.280]   
See also in sourсe #XX -- [ Pg.46 , Pg.54 , Pg.55 , Pg.56 ]




SEARCH



Explosion risk

Explosives assessment

© 2024 chempedia.info