Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction vessels, heat transfer

In this chapter we discuss important issues as we move from laboratory to pilot plant and manufacturing. A review of batch process operation and pharmaceutical research is covered in Section 3.1.2, followed by laboratory vessels and reaction calorimetry in Section 3.1.3. In Section 3.1.4 heat transfer in process vessels is presented, including the effect of reactor type and heat transfer fluid on the vessel heat transfer capability. In Section 3.1.5 dynamic behavior based on simulation studies is discussed. [Pg.140]

B is the adiabatic flame temperature, tr the isothermal reaction relaxation time at temperature T , and tn the characteristic time of vessel heat transfer. [Pg.367]

If a calorimetry experiment is carried out under a constant pressure, the heat transferred provides a direct measure of the enthalpy change of the reaction. Constant-volume calorimetry is carried out in a vessel of fixed volume called a bomb calorimeter. Bomb calorimeters are used to measure the heat evolved in combustion reactions. The heat transferred under constant-volume conditions is equal to A Corrections can be applied to A values to yield enthalpies of combustion. [Pg.195]

Transient hydrodynamic models are non-existent. In catalytic reactors, solids provide thermal inertia that stabilize highly exothermic processes. A potential hazard exists in these reactors if a loss in circulation results in the vessel emptying before the control system responds [124]. Furthermore, with regard to exothermic reactions, internal heat transfer surface area may be introduced to maintain temperature uniformity. Internals may affect flow patterns and solids hold-up, but further research is required. [Pg.288]

A solution of sodium cyanide [143-33-9] (ca 25%) in water is heated to 65—70°C in a stainless steel reaction vessel. An aqueous solution of sodium chloroacetate [3926-62-3] is then added slowly with stirring. The temperature must not exceed 90°C. Stirring is maintained at this temperature for one hour. Particular care must be taken to ensure that the hydrogen cyanide, which is formed continuously in small amounts, is trapped and neutrali2ed. The solution of sodium cyanoacetate [1071 -36-9] is concentrated by evaporation under vacuum and then transferred to a glass-lined reaction vessel for hydrolysis of the cyano group and esterification. The alcohol and mineral acid (weight ratio 1 2 to 1 3) are introduced in such a manner that the temperature does not rise above 60—80°C. For each mole of ester, ca 1.2 moles of alcohol are added. [Pg.467]

Reductive alkylations and aminations requite pressure-rated reaction vessels and hiUy contained and blanketed support equipment. Nitrile hydrogenations are similar in thein requirements. Arylamine hydrogenations have historically required very high pressure vessel materials of constmction. A nominal breakpoint of 8 MPa (- 1200 psi) requites yet heavier wall constmction and correspondingly more expensive hydrogen pressurization. Heat transfer must be adequate, for the heat of reaction in arylamine ring reduction is - 50 kJ/mol (12 kcal/mol) (59). Solvents employed to maintain catalyst activity and improve heat-transfer efficiency reduce effective hydrogen partial pressures and requite fractionation from product and recycle to prove cost-effective. [Pg.211]

An industrial chemical reacdor is a complex device in which heat transfer, mass transfer, diffusion, and friction may occur along with chemical reaction, and it must be safe and controllable. In large vessels, questions of mixing of reactants, flow distribution, residence time distribution, and efficient utilization of the surface of porous catalysts also arise. A particular process can be dominated by one of these factors or by several of them for example, a reactor may on occasion be predominantly a heat exchanger or a mass-transfer device. A successful commercial unit is an economic balance of all these factors. [Pg.2070]

Topics that acquire special importance on the industrial scale are the quality of mixing in tanks and the residence time distribution in vessels where plug flow may be the goal. The information about agitation in tanks described for gas/liquid and slurry reactions is largely apphcable here. The relation between heat transfer and agitation also is discussed elsewhere in this Handbook. Residence time distribution is covered at length under Reactor Efficiency. A special case is that of laminar and related flow distributions characteristic of non-Newtonian fluids, which often occiu s in polymerization reactors. [Pg.2098]

Although they are termed homogeneous, most industrial gas-phase reactions take place in contact with solids, either the vessel wall or particles as heat carriers or catalysts. With catalysts, mass diffusional resistances are present with inert solids, the only complication is with heat transfer. A few of the reactions in Table 23-1 are gas-phase type, mostly catalytic. Usually a system of industrial interest is liquefiea to take advantage of the higher rates of liquid reactions, or to utihze liquid homogeneous cat ysts, or simply to keep equipment size down. In this section, some important noncatalytic gas reactions are described. [Pg.2099]

Heat evolution is 0.94 to 1.10 kcaJ/(kg oil)(unit drop of IV) (1.69 to 1.98 Btu/[lbm oil][unit drop of IV]). Because space for heat-transfer coils in the vessel is limited, the process is organized to give a maximum IV drop of about 2.0/min. The rate of reaction, of course, drops off rapidly as the reaction proceeds, so a process may take several hours. The end point of a hydrogenation is a specified IV of the prod-... [Pg.2113]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

Some toll processes lend themselves to test runs in the pre-startup phase. Actual materials for the toll may be used in the test or substitute materials, typically with low hazard potential, are often used to simulate the charging, reaction, and physical changes to be accomplished in the toll. Flow control, temperature control, pressure control, mixing and transferring efficiency can be measured. Mechanical integrity can be verified in regard to pumps, seals, vessels, heat exchangers, and safety devices. [Pg.103]

A continuous flow stirred tank reactor (CFSTR) differs from the batch reactor in that the feed mixture continuously enters and the outlet mixture is continuously withdrawn. There is intense mixing in the reactor to destroy any concentration and temperature differences. Heat transfer must be extremely efficient to keep the temperature of the reaction mixture equal to the temperature of the heat transfer medium. The CFSTR can either be used alone or as part of a series of battery CFSTRs as shown in Figure 4-5. If several vessels are used in series, the net effect is partial backmixing. [Pg.226]

See Figures I0-93A and I0-93B as limited examples of reaction and other process vessels that require heat transfer for proper processing. Markovitz reports improved heat transfer for the inside of jacketed vessels when the surface has been electropolished, which gives a fine, bright surface. [Pg.157]


See other pages where Reaction vessels, heat transfer is mentioned: [Pg.889]    [Pg.889]    [Pg.202]    [Pg.40]    [Pg.197]    [Pg.207]    [Pg.147]    [Pg.1087]    [Pg.470]    [Pg.15]    [Pg.34]    [Pg.341]    [Pg.295]    [Pg.438]    [Pg.512]    [Pg.421]    [Pg.64]    [Pg.459]    [Pg.418]    [Pg.271]    [Pg.1052]    [Pg.2070]    [Pg.2120]    [Pg.2]    [Pg.55]    [Pg.206]    [Pg.440]    [Pg.222]    [Pg.618]    [Pg.1116]    [Pg.289]    [Pg.327]    [Pg.156]    [Pg.156]    [Pg.557]    [Pg.329]   
See also in sourсe #XX -- [ Pg.496 ]




SEARCH



Heat transfer to reaction vessels

Heated vessels

Reaction heat

Reaction heat-transfer

Reaction vessels

Reaction vessels, heat transfer with jacket

Transfer Vessels

Vessel heating

© 2024 chempedia.info